4D printing and a world of smart materials

 

Just when you thought a new era of disruption is upon us, another one comes right behind it. The latest disruption, 3D printing, is by some estimates predicted to have a greater impact on the world over the next 20 years than all of the innovations from the industrial revolution combined. 4D printing is a further evolution of 3D printing and is set to completely alter how we create and produce materials by adding the dimension of transformation over time into the creation process.

3D printing is currently transforming the manufacturing of everything from shoes, cars, space stations parts, buildings, and much more by allowing us to produce custom materials and products on demand. 3D printing leads to quicker response, reduced lead times, swift innovation, rapid manufacturing, reduced overhead, mass customization, mass production, use of unique materials, and economies of scale, according to Deloitte.

1*cziY7ble7CxNEmDh1_Ja-Q

The technology holds so much promise that some companies are looking to build entire cities from massive 3D printers. A 3D-printing crane dubbed the Minitank can layer up to 2,153 square feet of concrete per day for the construction of buildings, making it 50 percent faster than traditional construction methods.

As 3D printing is now steadily changing the way we produce items, 4D printing is evolving right behind it. 4D printing involves 3D printing objects that can self-assemble and transform based on some external stimuli. For example, a table that assembles itself when you touch a part, or an airplane wing that transforms with wind speed, or a temperature-activated cardio stent. 4D printing is similar to 3D printing since it uses the same techniques of computer-programmed “printing” of layered materials to create a three-dimensional object. However, during the fabrication process of 4D printing, the printed produce reacts to external stimuli — heat, water, chemical, pressure, etc. — to self-assemble or change.

MIT’s Self-Assembly Lab is at the forefront of the 4D printing movement. The lab was created to see how researchers could 3D print an object without relying on sensors or chips. In order to make something “4D” — assemble itself or change precisely under certain conditions — a precise geometric code is used based on the object’s angles and dimensions, as well as measurements that dictate how it should change shape when interacting with outside forces.

“Normally, we print things and we think they’re done,” said Skylar Tibbits, a research scientist at MIT. “That’s the final output and then we assemble them. But we want them to be able to transform and change shape over time. And we want them to assemble themselves.”

Tibbits sees numerous uses for 4D printing technology, including footwear that can adapt to particular sports: “If I start running,” he said, “[the sneakers] should adapt to being running shoes. If I play basketball, they adapt to support my ankles more. If I go on grass, they should grow cleats or become waterproof if it’s raining. It’s not like the shoe would understand that you’re playing basketball, of course, but it can tell what kind of energy or what type of forces are being applied by your foot. It could transform based on pressure. Or it could be moisture or temperature change.”

Numerous organizations are pouring money in 4D printing research and development, including Airbus SAS who is using 4D-related “smart” material that reacts to temperature to cool jet engines and a wing that morphs according to aerodynamic conditions to decrease air resistance. Briggs Automotive Company is developing a morphable wing for its supercar that can adjust to external weather conditions and automatically adjust itself to provide maximum downforce to the car.

“The ability to program a particular area of the material and be able to activate it through heat, water, chemical reaction, pressure and many other external influences to actually do self-assembly. Altogether these represent what we believe will be the next industrial revolution and a fundamental transformation in manufacturing overall.” — Shane Wall, HP CTO

The U.S. Army Research Center is developing a variety of applications including a soldier’s uniform that can alter its camouflage or provide more effective protection against poisonous gases or shrapnel upon contact. Plus, the U.S. Army gave a grant to Harvard University, University of Pittsburgh and University of Illinois to explore ways the military could use self-assembling objects, including the possibility of shelters or bridges that assemble themselves.

Shane Wall, our chief technology officer at HP believes, “That is what 4D printing is about, self-assembly. The ability to program a particular area of the material and be able to activate it through heat, water, chemical reaction, pressure and many other external influences to actually do self-assembly. Altogether these represent what we believe will be the next industrial revolution and a fundamental transformation in manufacturing overall.”

Wall said 4D printing technology is not merely a novelty, but a necessity due to increasing urbanization caused by world population growth that is expected to reach 8 billion people over the next 30 years. This will cause an increase in “megacities — or cities with populations over 10 million people — from 10 in 1990 to 41 over the next ten years. This rapid urbanization will put an incredible demand on manufacturing and the distribution of materials.

The 4D printing industry is expected to be worth upwards of $537 million by 2025 and grow by a CAGR of 42.95 percent between 2019 and 2025. This is being driven by the need to reduce the costs of manufacturing and processing in the face of an increasing focus to ensure a sustainable environment.

“A 4D printed product would incur lesser manufacturing, transportation, and handling costs, which, in turn, would lead to the saving of resources and efforts, thereby sustaining the environment,” according to a report by Grandview Research.

The primary materials segments used for 4D printing are programmable carbon fiber, programmable wood grain, and programmable textiles, with the programmable carbon fiber segment expected to be the largest segment in the overall 4D printing market, according to the Grandview Research.

Since programmable carbon fiber has high stiffness, low weight, and tensile strength, it can be beneficial for many industrial applications, says Grandview Research. It can be autonomously transformed by printing active material on flexible carbon fiber using heat as an activator and it doesn’t require complex electronics, actuators, or sensors.

4D printing to save lives

The healthcare industry is set to take advantage of 4D printing since 4D printed products will be responsive to body needs once ejected in the human body. This could be used for tissue engineering, self-assembling human-scale biomaterials, design of nanoparticles, and nanorobots for chemotherapy. A Frost & Sullivan report finds that 4D printing is still in its infancy and not yet ready for widespread use, yet the potential for the technology in the medical field is significant.

“The potential of this technology to create programmable biological materials that can change shape and properties can be a foundation for enabling smart pharmacology, personalized medicine, and programmable cells and tissues that could be employed in precisely targeted treatments for a number of diseases,” the report notes.

A researcher at the University of Michigan developed a 3D printed splint that can hold open airways of newborn children for two to three years, then absorb into the body. The device was successfully implanted in four babies. Medical researchers are also looking into using 4D biomaterials to help adults correct skeletal applications like facial reconstruction or rebuilding ears.

To read the rest of the article, visit HPMegatrends.com.

Blog Trends

BioConvergence: How nature-inspired technology is transforming our world

After about 4.5 billion years of solid research and development, nature has developed some ingenious solutions. From transporting water and nutrients up a 300-foot-tall redwood tree to defying gravity, nature has developed some of the best known methods for life to adapt and thrive.

Researchers and scientists have been increasingly keen to study nature in search of new innovations. Sometimes, they simply present themselves. Velcro, for example was created after a Swiss scientist went on a hike in the Alps and noticed that burdock burrs were stuck on his clothes and his dog. It took him 10 years to develop velcro, but now he’s resting comfortably having given the world a new way to stick.

BioConvergence is, put simply, the study of nature and the application of natural processes and phenomena to innovation. Technically it’s the convergence of biological, physical, and computing technologies inspired by nature. This field is now developing some of the most exciting and innovative developments in science and technology, including new materials and new fabrication processes for more efficient and resilient products.

 

Researchers are drawing on BioConvergence to find efficient, diverse, and ingenious approaches to problem-solving. New solutions are needed now more than ever, as the world’s population is expected to expand to an estimated 8.5 billion people by 2030, including 1 billion new people joining the middle class and consuming more resources. Concerns over sustainability as it relates to these projected needs are prompting new approaches to how we harness energy, consume resources and produce products.

The following are some examples of how BioConvergence is transforming the world as we know it.

Nature-inspired fabrication

In a future where demand could outweigh resources, alternative materials and fabrication methods may be needed–and soon. While previously the majority of our product manufacturing relied on a subtractive and replicative fabrication, we are now seeing increasing interest and use of additive manufacturing processes, that will give us greater control and less waste in product fabrication.

This form of manufacturing allows us to spend more time focusing on the detail of materials properties and science we are actually using to make fabrication and manufacturing more efficient and to increase throughput. It also inspires us to create products with varying material customization and personalization. It’s akin to the organization of cellulose fibers in the branch of a tree give the tree branch flexibility and yield. These properties are substantially different from the material in the trunk of the same tree. It’s the same wood but their mechanical properties are different based on the function of that region of the wood. We are moving into a world where instead of removing material, we add details needed by modifying the material rather than assembling another part.

Additive manufacturing, is an area HP is helping to pioneer and advance with its Jet Fusion technology. With HP’s Jet Fusion technology, users can control a material’s properties, such as color, mechanical strength,texture, elasticity, electrical and thermal conductivity, index of refraction, opacity, and more. This technology allows for the manufacture of parts with different qualities from common material. A part can have durable, hard surfaces with low friction where contact and wear will occur, and a differing index of refraction in another area.

Bioinspired materials

Bioinspired materials are synthetic materials whose structure, properties or function mimic those of natural materials or living matter. Examples of bioinspired materials are light-harvesting photonic materials that mimic photosynthesis, structural composites that imitate the structure of nacre (aka mother-of-pearl), and metal actuators inspired by the movements of jellyfish.

With the rise of 3D printing, greater inspiration is being gleaned from nature to construct new materials, substitute existing materials and develop new fabrication processes.

“Biological systems have clearly shown that large numbers of molecules, structures, and systems in living organisms possess attractive materials properties that are beyond the reach of current nonbiological synthetic approaches,” states the Materials Research to Meet 21st-Century Defense Needs paper by the National Academies Press. “Many of these molecules, structures, systems, and natural fabrication processes could serve as the basis for synthetic materials with enhanced properties.”

The bones of a bird have inspired new forms of concrete. While a bird’s bones are somewhat hollow, they are highly resilient and efficient, rather than fragile. The Technical University Munich (TUM) is experimenting with 3D printing to create lightweight cement pipes with a network of internal supports, similar to a bird’s bones. With a focus on structural efficiency vs. structural volume. Meeting physical requirements with minimalistic design.

“The design was inspired by the bone of a bird: very thin and light, but still very stable,” said Dr. Klaudius Henke, TUM Chair of Timber Structures and Building Construction, “It would be impossible to make it using traditional methods. 3D printing will change architecture. The technology not only allows more versatile shaping, but also more variety, since each component can be individually designed without incurring any additional costs.”

DNA digital data storage

The natural world is also inspiring researchers pondering our growing data problem. By 2040, the demand for global memory is expected to exceed the projected supply of silicon, the raw material for flash memory, according to some scientists. This is based on projected use of data, which continues to be consumed each year at an exponential rate.

Scientists are seeking solutions by looking to nature’s most efficient storage unit: DNA. DNA is three dimensional, lending vastly more storage space per unit area compared to conventional hard drives, which store information on a two-dimensional surface. Through DNA digital storage, scientists found a way to store 215 petabytes, or 215 million gigabytes– roughly equivalent to all the data on the internet — in a single gram of DNA. DNA is made of nucleotides: chemical “building blocks” of phosphate, sugar and nitrogen. As a raw material, it is highly compact and can last hundreds of thousands of years if kept in a cool, dry place.

“DNA won’t degrade over time like cassette tapes and CDs, and it won’t become obsolete,” said Yaniv Erlich, a computer scientist at Columbia University.

Information has been extracted from DNA in bones that are 700,000 years old. And, this memory uses 100 million times less energy than storing data electronically in flash.

Energy through osmosis

A 300-foot coastal redwood tree transports water and nutrients from deep in the ground, through its trunk, out and up its bark and leaves via its nutrient transport system. This incredible feat has inspired scientists to harness the energy of osmotic reactions to produce renewable energy.

In Tofte, Norway, a prototype power plant was created that uses osmotic processes to generate carbon-free electricity. For this power plant, energy is generated as a result of the concentration gradient in places where freshwater meets dense salt water, as it does along coastlines all over the world.

“We critically need more green energy in the world,” said Skilhagen, Statkraft’s Head of Osmotic Power. “Osmotic can be a valuable contributor. It’s a base load renewable energy. You can make electricity from the combination of fresh water and sea water.”

Statkraft’s plant pulls salt water and fresh water from nearby sources and places them into adjoining chambers separated with a thin, permeable membrane. The freshwater forces its way through to the salt water, creating pressure on the salt water side that turns an energy turbine.

One day osmotic power could generate 1700 TWh of electricity per year, which is about half of the European Union’s current consumption, Skilhagen believes.

To read how computers can simulate the brain, and the rest of the article, head over to HPMegatrends.com.



I want to hear your thoughts, too! Leave a comment below or join in on the Twitter conversation by using the hashtag
#MegatrendsbyHP and tweeting me at @AndrewBolwell.

 

Blog Innovation Trends

How Megatrends inform HP’s investment strategies

Strategic investments give HP an eye to the future

One of the primary goals for many corporate venture capital units is to help their company capture future opportunities early. Technology change is happening exponentially around us, and no single company can compete in the world today using just internally developed technology. The successful companies of today and tomorrow, by necessity, will need to embrace open innovation and partner closely with the start-up and venture communities to leverage the full breadth and depth of technology innovation that is taking place around us.

Investing in start-ups provides companies not only with foresight about the markets of tomorrow but optionality to enter those markets by partnering with or acquiring startups to bootstrap and accelerate market entry. Investing in start-ups has many benefits to companies like HP, both strategic and financial. It’s never a choice between the two, as a good investment will have strong strategic value and returns.

Successful investing means aligning a complex array of variables. Starting with understanding the financial viability of the investment and likelihood the start-up can achieve a successful exit (via acquisition) or IPO, and at a valuation that makes the investment worthwhile. Next, you need to look at the strategic impact to the company and if the investment aligns with the vision and strategic objectives of the company. Finally, you need to negotiate terms that make sense for both and the start-up, ensuring is strategically positioned as an investor and advisor, and providing the guidance and financial backing the start-up needs to succeed long-term.

So how does a company move through this process efficiently, always keeping strategic and financial objectives in mind?

To read the full article, visit HPMegatrends.com.

Blog Innovation Trends

The future of transportation: How AI is helping vehicles think

What happens when computers become intelligent? We are just now beginning to see what this future may look like, as gains in artificial intelligence (AI) are increasing. From intelligent self-driving cars, to AI-powered robot surgeons and smart factories, computers and machines that can learn and adapt will soon change the world as we know it.

While we are still in the nascent phase of AI technology, billions of dollars are being spent on research and development, helping to accelerate AI advancements. IDC predicts AI spending will increase by more than 50 percent year over year and reach $57.6 billion in investments by 2021.

One industry poised for massive disruption from AI-led technology is transportation. Leading automotive manufacturers and technology companies are in a heated race to develop fully autonomous vehicles (AVs) for use as taxis, commercial transportation, personal transportation and more.

All major car manufacturers are currently exploring AV technology. Each day in Arizona, hundreds AVs developed by Google’s Waymo, Lyft, General Motors and Intel roam the streets of Phoenix and other cities. Arizona lawmakers intentionally created minimal regulations for AVs in order to attract AV-related companies, which encouraged a sort of tech boom in the state. Safety advocates have criticized the state’s lax approach, claiming that more regulations around safety, auto cybersecurity, insurance and privacy have not been worked out.

While AVs for personal transportation have garnered a great deal of attention, AI is now disrupting virtually all other areas of transportation. Uber, Waymo and other companies are testing and using autonomous cargo trucks to deliver goods. GE transportation is actively using AI to develop “intelligent” locomotives to improve efficiency of rail transport and Hitachi is using AI to reduce power consumption. Major airline companies already use autopilot technology to do most of the work once a plane is in the sky and can even land a plane in inclement weather. Now they are researching how AI can replace more of a pilot’s responsibilities.

AI is even having an impact on city infrastructure and planning of cities. The U.S. Department of Transportation issued a call for proposals from cities looking into smart infrastructures. It will award 40 million dollars to a city that can demonstrate how to solve critical municipal challenges using innovative transportation technologies, data and applications.

“It is very clear to us that autonomous technology will fundamentally change the industry,” said Michael Ableson, GM’s vice president of global portfolio planning and strategy. “There is no greater impact on the industry than self-driving cars.”

Enjoying this article? Read The butterfly effect of self-driving cars

The brains behind self-driving vehicles
Soon, we may well see the road filled with AVs. According to WinterGreen Research, over 90 million autonomous-capable consumer vehicles, cars and light trucks will be on the road worldwide by 2023.

In order for this to happen, a fully functioning, safe AV needs an enormous amount of computing resources, power and AI that can sort through large amounts of data in milliseconds. The biggest challenge facing AVs is to improve the software powered by machine learning and AI to correctly interpret data that is fed through the car’s sensors. It needs to safely drive a vehicle through various weather scenarios and identify and respond to other cars, animals, pedestrians, bike riders and more. In other words, the AI that controls self-driving cars needs to be error-free. “This is not a recommendation engine for Netflix,” said Danny Shapiro, senior director of automotive at chipmaker Nvidia. “The AI has to be spot on.”

AI is already being used for AVs today, including Tesla’s Autopilot system that helps drivers navigate highways and parking lots. Tesla claims every vehicle it produces has the ability for complete, autonomous driving, yet it will only be activated when the necessary software and government regulations are in place.

Cameras inside certain vehicles now identify drivers and track eye position to see if the driver is distracted or asleep. Cars also now identify and predict potential cross traffic danger. Auto braking features that prevent collisions are in place. In fact, if you have a 2017 car, it most likely has level two partial automation features, which can be steering assistance and accelerating or decelerating under certain situations, as defined by the Taxonomy and Definition for Terms Related to On-Road Motor Vehicle Automated Driving Systems. The next three levels in the classification system are all based on vehicles with automated driving systems that monitor and respond to the environment.

As we continue the road to AI-enabled AVs, here are some other exciting details that are expected to emerge in the coming years:

Automotive self-diagnostics and maintenance
As automobiles become more like computers with wheels, they are increasingly becoming connected and, with artificial intelligence capabilities, will predictively identify maintenance needs. By combining data from advanced Internet of Things sensors, maintenance logs and other external sources, AI will help with better prediction and avoidance of machine failure, according to McKinsey. This could reduce maintenance costs by up to 10 percent.

Predii, a company that provides a platform that enables organizations greater efficiency for repairs and maintenance, predicts that connected cars will be a source of high-frequency data for predictive and proactive maintenance.

“The availability of continuous streams of data from vehicles will empower vehicle monitoring businesses which are responsible for continuous health checks of your vehicle or fleets of vehicles,” according to a white paper by Predii. “Intelligent repair solutions will monitor check engine lights, diagnostic trouble codes, symptoms and data from advanced driver assistance systems.”

Automated cars are programmed to obey laws
Imagine intelligent cars that can drive somebody home who has consumed too much alcohol. Or takes over the wheel if somebody falls asleep. One of the key predicted benefits of having AVs on our roadways is the reduction of traffic accidents. In 2017, there were an estimated 40,000 traffic fatalities in the U.S., with more than 90 percent of them caused by human error, according to the National Safety Council.

Self driving cars are far better than humans at obeying traffic laws, since they are programed to do so. They don’t text and drive, or drive under the influence of alcohol, or drive too fast, which makes them much safer than humans.

Government traffic planners are optimistic that AVs won’t go over the speed limit, which will produce more cohesive and calm roadways with fewer accidents, according to a report last year on speed limits by the National Conference of State Legislatures.

Car Rental Companies become Self-Driving Car Fleet management operators
If a car can drive itself, do we really need to own our own vehicle? Can’t we call Uber to pick us up in one of their AV taxis? That’s the question posed by various automakers, technology and rental car companies, who envision a near future full of “robot taxis” through a ride sharing or rental car service. This “on-demand autonomous” vehicle is a vision of Michael Ableson, GM’s vice president of global portfolio planning and strategy. And it’s why GM paid $500 million for a stake and a strategic alliance in Lyft, the second biggest ridesharing service behind Uber. Ford isn’t far behind, since in August 2016 the company announced a “high-volume, fully autonomous vehicle for ride sharing” by 2021.

With a fleet of AVs, car-sharing companies are expected to have a coherent view of an AV fleet, monitor and manage it, detect issues and enforce policies. Operators can gather data of each individual vehicle including location, mileage, fuel consumption, driving behaviors and even if a door is left open. The AVs can then be remotely controlled to drive to service stations for repair and refueling.

Reroute traffic based on congestion, accidents, etc.
Google maps and other map-based apps have already helped road warriors find the shortest route possible to their destination. As AVs include greater connectivity, the AI behind it can gather data regarding traffic patterns, accidents and slows downs and appropriately — and automatically — reroute for optimal travel. This will help to ultimately lessen traffic congestion.

Tesla’s complete self-driving system will use GPS technology to find the optimal route to its given destination. If the car isn’t given a destination, it can check the owner’s calendar to determine the best destination or take the owner home.

Vehicles as “digital living environments”
It now takes the average U.S. worker 25 minutes to travel to work, according to the U.S. Census Bureau. AVs are expected to free up time for passengers to focus other tasks, including work, socializing, viewing entertainment, etc. Bosch has created a show car to display the company’s “digital living environment” inside AVs. It features large-surface monitors with the ability to have video conferences, display real-time traffic and weather information, email accessibility and entertainment options.

“Alongside the home and the office, the car will become the third living environment and a personal assistant,” said Bosch CEO Volkmar Denner.

Autonomous truck services
In October 2016, the world’s first successful autonomous truck delivery was completed when an Uber truck carried 50,000 cans of Budweiser beer over a distance of 120 miles from Fort Collins to Colorado Springs, CO. Now Uber’s autonomous trucks are delivering goods throughout Arizona. Other AV companies are following suit.

A report by the International Transport Forum claims autonomous delivery vehicles will save costs, lower emissions and improve road safety, compared with trucks operated by humans. New autonomous trucks will have the ability to perform a host of delivery duties including pick up garbage, deliver packages and food, and a numerous other services. All these services can be optimized through advanced logistics for traffic flow.

Public transportation safety and usage optimization
Public transportation also stands to benefit from the use of AVs and the associated logistics operations systems.

In Helsinki, Finland, trial is underway where an autonomous bus transports up to a dozen passengers at a time through a quarter-mile route with restaurants and saunas. The city is expected to expand the trial and provide autonomous bus services throughout the city, in order to measure customer response and basic operations data.

“There’s a lot of demand to solve the last-mile problem,” said Harri Santamala, the city’s project coordinator, referring to the challenge of transporting passengers from centralized transit hubs to their final destinations. “I think this is something we could do with automatic buses. On a real-time basis, we can adjust how they drive and where they make the connection. We’ve learned with this pilot that you can be flexible and synchronize with this technology. We could scale this up to the entire fleet.”

Metro Magazine suggests numerous benefits to a municipal transit system powered by autonomous buses:

  • Trip-planning information is integrated across modes and agencies (public and private), so the general public has the ability to evaluate their travel options with comprehensive information on travel time, cost, environmental impact, and more.
  • Real-time schedules for all transportation modes are centrally available.
  • Vehicles and transit schedules are “right-sized” so fleets are used effectively and there are no more empty buses.
  • Fare payment is made electronically and only one payment is needed for each whole trip.
  • Travel times are generally predictable and well-communicated.
  • Lower income and people with disability populations have access to all of these services.

The future of AVs are near
A world of intelligent vehicles is no longer a novel science fiction idea, but a near future. Passenger busses, taxis, personal vehicles, airplanes, trains and more are set to improve the way we get around. Ford, GE, Volkswagen, Audi, Toyota, Ford, BMW and Nissan are all hard at work creating and testing AVs they say will be road ready by 2020. And the U.S. Secretary of Transportation stated at the 2015 Frankfurt Auto show that he expects driverless cars to be in use all over the world within the next 10 years.

This AI-driven transportation revolution is expected to make our roadways safer, ease traffic congestions, make our transportation systems more efficient and make transportation more enjoyable. And, the trend toward urbanization might be reversed as AVs give people more time to work and be productive.

AI’s potential impact on transportation is immense. Advancements will continue to reshape the industry, how we drive, deliver and ship goods on earth and possibly in space in the future. Get ready to start your AI-powered engines.

 

Blog Innovation robotics Trends Videos

Brains, brawn and big business: AI and robots reshape the workplace

Automation technology is moving into the workplace with unstoppable momentum. As bots and robots take on more kinds of tasks, will they eliminate jobs? Or will they instead generate opportunity for workers to leverage their own strengths and manage their tireless mechanical colleagues?

In today’s workforce a factory line worker, a university professor, and a customer service rep are guaranteed to have one thing in common: a job that will be transformed by the presence of robots and AI in the coming decade. Will that worker be able to change along with it?

Blog Innovation Trends

Security never sleeps: Robotics and AI in public safety

“It’s the end of the world as we know it.” The iconic song from rock band R.E.M. has been the soundtrack for many dark days since its original release in…wait for it…1987. It was a simpler world then…wasn’t it?

Actually, there’s ongoing debate over whether we are living in an increasingly dangerous world, or whether 24-hour news cycles and social media are decrying global crime conditions that may actually be stable or in decline. Still, the news delivers a daunting barrage: terrorist attacks, gang murders, warring militant groups, gun violence and cybercrime. It can be hard to know where to focus and how to stay safe both in the physical and digital environments.

Better news: AI and Robotics in public safety and security present a growing, diverse and powerful force for good against an evolving threat landscape. From tireless patrol robots to game-theory based monitoring of harbors and airports to predictive analytics at IoT scale…security technology is helping law enforcement, businesses, communities, and citizens stay safe and quash criminal activity.

Robo-guards: At a data center or street corner near you

There’s a long tradition of retired police and military personnel joining the civilian security workforce. Military robots are following suit, being deployed as extensions of police departments and security staffing teams. Robots are increasingly being used as smart, and uber-efficient patrol guards in businesses, institutions, city streets and transit hubs. They have become affordable enough to justify cost even for smaller businesses. The global security robots market is likely to reach $2.71 billion in 2021, according to Arcluster, in the first-of-its-kind report on the Worldwide Security Robots Market (2016–2021).

There are numerous examples of military-style robots reporting for duty. The Los Angeles Police department handles car bombs with a 50-foot telescoping arm on their burly Bomb Assault Tactical Control Assessment Tool (BatCat), built on a Caterpillar tractor chassis. In Cleveland, a tiny version, the 12-inch robot Griffin, that under cars and behind dumpsters to scan for hidden explosive devices.

South Korea will be making extensive use of robo-guards to enforce security at the 2018 Olympic Games in Pyeongchang. In Greece, aquatic rescue robots have sped flotation devices across the water at 20 mph to Syrian refugees stranded by capsized boats. In Japan, suspicious drones flying over sensitive areas are scooped up by defense drones wielding what are essentially six-by-ten foot butterfly nets — the better to avoid falling debris that would result from shooting at them and destroying them in flight.

One company with early mainstream momentum is Knightscope, makers of the Autonomous Data Machines (ADMs). They are 4-to-5-foot tall robotic security guards, able to monitor and report activity, stream video, and sniff out cybercrime, detecting devices that are trying to access data on a network. They can detect and alert authorities to the presence of certain kinds of items — guns, for example — a person may be carrying into a public area.

While their AI-driven capabilities are impressive, these robo-guards are at their best when they are feeding insight to, and taking direction from, their human counterparts. And when they are visible in public spaces, it will be natural for them to fulfill other typical aspects of a human security guard’s role: being an greeter for a business or city; providing directions, and gathering input from members of the community or business they serve.

AI: The brains of the operation for tech-enabled public safety

Artificial Intelligence is the other half of the story. Oceans of data are generated daily, both by humans and by the global mesh of devices that interact with us and with each other.

There is tremendous promise in the ability to aggregate and crunch that data and turn it into usable insights for public safety officials. AI can help us pre-empt crime by recognizing patterns, finding anomalies, and using predictive analytics to anticipate the likely next moves of terrorists and criminals from the physical and digital realms.

Digital transformation in the public safety field is no small challenge. It requires legacy IT systems and entrenched processes and behaviors. But the CIA, recognizing an existential need to modernize, did just that a few years ago. It moved onto the commercial cloud a few years ago and is now able to instantly and securely inter-operate across all 16 of its agencies and all levels of classification — a development its leadership describes as “game changing.”

Collaborating with AI and Robots to cut cost and improve safety

AI and robotics have much to offer security professionals who are responsible for the safety of people, places, and things (physical and digital.) There’s no question that protecting human life, sensitive data and other assets are worthy of our investment. But resources are finite, and there is tremendous value in using technology to replicate elements of human judgement, observation and insight.

Accenture recently asked 165 technology leads in police, justice and intelligence departments worldwide to identify the biggest challenges they face today. Their top three answers were: financial constraints, increased citizen expectations and the need to modernize operations. Digital transformation is essential to overcoming those challenges — as is adopting a proactive, preventive security strategy to ensure greater safety for individuals and communities everywhere.

Blog Innovation robotics Trends

Building emotional connections & human resilience: Q&A with Mirjana Spasojevic

I was thrilled to sit down with Mirjana Spasojevic, head of the Immersive Experiences Lab at HP, to chat about building emotional connections and human resilience. She recently spoke at RISE 2017 about the work HP Labs has been doing to better understand people and their practices in order to craft the best experiences with future technologies.

Here’s a snapshot of our conversation about the Immersive Experiences Lab’s quest to understand and fulfill the promise of valuable, delightful experiences through data-driven, user-centric solutions.

How does HP’s mission and outlook on Megatrends play a role in the Immersive Experiences Lab?
HP’s mission to “engineer experiences that amaze” plays a vital role in how we innovate in the Lab. We want to create technologies that makes our customers’ lives better. We do that by studying how people work and live – their motivations, their emotions – and then we consider how technology might change their practices in the future. We are constantly prototyping, experimenting, and iterating based on our learnings because we want to help drive positive change in people’s lives through the solutions and experiences we create.

We also make big bets based on Megatrends – Rapid Urbanization, Changing Demographics, Hyper Globalization, and Accelerated Innovation. With these Megatrends as a backdrop, we as researchers craft experiences that anticipate how the world will be in three to seven years.

What projects has the Immersive Experiences Lab worked on that exemplify this?
Recently we created Project Jetty. This concept started in a brainstorming session, and our team’s goal was to help people feel connected without actually being connected. In our study, we placed an “art object” – a 3D-printed, realistic representation of a subject’s house – in the home of an older adult and another 3D-printed house in their children’s homes. Each printed house glowed when its owner was home, and it sat in a photo frame with holographic, real-time weather displayed around it.

Before the study, all of our study participants indicated they didn’t stay in touch with others as often as they’d like, and felt dissatisfied with their current methods for keeping in touch. After the study, we heard comments like, “I feel happy and warm inside because in some strange way I feel I am able to see them through this device.”

This is when we saw an exciting shift in how these people experienced the concept away from technology and toward the fulfillment of emotional needs.

I find the shift from technology to emotion fascinating. Can you tell me more about that goal?
Of course. With Jetty we aren’t necessarily looking to develop a new HP product. Instead, we wanted to extend our understanding of how technology can help us live better and feel more resilient in our lives.

We’ll use the learnings from Project Jetty in a wide variety of future projects. We believe the future of computing is people-centric. Wearables, smart materials, and technology in general should always strive to support human resilience and authentic experiences.

This people-centric approach is at the heart of everything we do in the Immersive Experiences Lab.

Learn more about the work Mirjana and her team are working on here.

Blog Guest Blog Post Innovation Trends Wearables