How weak signals can help you stay ahead of the next wave of innovation

A crucial ingredient for any successful business is understanding the trends shaping the world around us and that point to future opportunities.

If you miss these shifts, you risk being disrupted and, worse, going out of business. But if you can catch these potential trends early and capitalize on them, they instead mean growth and opportunity.

Catching these subtle changes early isn’t easy, however. All world-changing shifts don’t just magically appear, they start as weak signals, and you must look for them. A weak signal is very early evidence of a potential future mainstream trend. Given the very early nature of these signals, they may or may not actually become a trend. But identifying and monitoring weak signals over time is integral to getting in on new trends early. Sometimes this can be the difference between catching a new wave and leading this change or getting left behind.

As futurists, we want to be the disrupters, not those being disrupted. To do that, we need to constantly observe society and the world around us to find these new trends and weak signals.

Here are eight weak signals that our team is watching for future impact.

Eco-consumerism

Consumers are becoming more aware of how their consumption contributes to climate change, and this is changing their buying behaviors accordingly. As consumers become more eco-friendly, they’re putting pressure on brands to do the same by repurposing waste, using biodegradable materials, and prioritizing renewable resources. Companies that don’t embrace sustainability or give back to the planet in some way risk losing the support of consumers. With 77% of consumers concerned about the environmental impact of the products they buy, that’s a large demographic to risk losing.

Here’s a look at eco-consumerism at play:

  • These bio-concrete tiles are made with Japanese knotweed and American signal crayfish, two invasive species in the UK that would otherwise be considered waste. They also reduce carbon emissions caused by traditionally made concrete.
  • These running shoes from Zen Running Club are made entirely from plant-based materials, resulting in a fully biodegradable shoe.
  • Molded fiber, an eco-friendly packaging alternative, is gaining momentum. Once a time-consuming process, recent innovations like HP’s Molded Fiber Advanced Tooling Solution are accelerating the adoption of more sustainable packaging.

Rise of reality

While we are still living highly digital lives, and there is significant hype surrounding a potentially virtual future in the metaverse, there is also a growing need for a return to reality. After the lockdown portion of the pandemic, many of us are ready to return to physical spaces, travel, and in-person entertainment to escape Zoom fatigue and tech burnout. As more people crave unplugging over new online experiences, it will be critical for new technologies to enhance our physical experiences and interactions. Even further, tech companies are responsible for improving their products to battle burnout and enhance user experience.

Here’s a look at the rise of reality at play:

  • AiFi, an HP Tech Ventures portfolio company, offers AI-powered autonomous retail solutions, making shopping a seamless experience for consumers and retailers.
  • To address tech fatigue, many tech companies could provide time-limit features or recommend breaks to users. Other companies are getting even more creative, like these hologram startups aiming to make remote meetings feel less impersonal.
  • Location-based VR experiences, powered by technologies like HP’s VR backpack, allow users to blend the virtual with reality.

Distributed enterprise

In a recent HP Wolf Security report, 46% of office workers admitted using their work devices for personal tasks, and 69% claimed to have used their personal devices for work activities. This overlap between work and personal devices has been exacerbated by the increase in remote work, which has further blurred the line between consumer and enterprise. Enterprise products and services are being increasingly distributed across smaller home offices rather than large company headquarters. This has significant implications for cybersecurity and maintenance and could contribute to feature changes.

Here’s a look at distributed enterprise at play:

  • With the era of hybrid work upon us, there is a growing need for devices connecting home and corporate offices. Solutions like HP Presence provide powerful collaboration tools to reinvent how people connect.
  • Employees and companies can better protect their data from cybercriminals by embracing decentralized cybersecurity. Approaches like zero trust security are gaining popularity, with 78% of firms planning to adopt zero trust in 2022.
  • Remote maintenance is not entirely new, but it’s increasingly essential as remote work grows. Advanced remote management technologies, like NVIDIA’s Fleet Command, are working to optimize processes for global IT professionals.

Omniscient health

As people continue to be hyper-conscious of their health, there has been significant growth in health-related technologies ranging from wearable devices to AI-powered diagnostics. Wearables like fitness trackers have become smarter and more powerful, so users are gaining greater insight into their health. Health providers can use this new data, paired with the power of AI, to aid in their care. Microfluidics could also enable faster, less invasive, and more accurate diagnostics. As monitoring our health becomes part of our daily routine, chronic issues could be caught sooner, leading to more proactive care.

Here’s a look at omniscient health at play:

  • Using data from continuous wearable sensors, physiQ generates personalized and actionable insights for patients and their healthcare providers.
  • For people with chronic illnesses, health monitoring tools are essential. Fortunately, many startups are working to create more straightforward and less invasive health monitoring methods, such as BOYDSense, which developed a breath-based glucose level monitor for those with diabetes.
  • Using microfluidics, researchers at Northwestern developed a sticker that absorbs and uses sweat to accurately diagnose cystic fibrosis in newborns. Another research team from the University of Minnesota has also created a new microfluidic chip that could provide point-of-care diagnostics.

Internet of energy

At our current rate, global energy consumption is set to see a 50% increase between 2020 and 2050. With the growing volume of data, demand for clean energy, and increasing adoption of emerging technologies, a new energy system may be critical. Antiquated energy infrastructure, like electrical grids, cannot keep up with technology advancements and energy demands. The Internet of Energy may be the best solution, as it can reduce inefficiencies, limit waste, and maximize the potential of existing infrastructures. It could also lead to the adoption of smart grid technology, which would hugely benefit users and energy consumption.

Here’s a look at the internet of energy at play:

  • Smart panels from startups like Span balance home electricity use to avoid overloading utility grids.
  • Packetized Energy, recently acquired by EnergyHub, is a software platform aggregating energy devices such as water heaters, HVAC systems, electric vehicle chargers, solar inverters, and distributed batteries into dispatchable and flexible grid resources.
  • General Electric (GE) launched a startup, Current, which pairs LEDs and solar panels with software. This allows the system to gather data to apply insights to corporate operations to increase lighting and productivity savings.

Geospatial AI

The increasing number of satellites and improved image quality provides a plethora of data that, combined with supercomputing, allows Geospatial AI (GEOAI) to extract and impart impactful insights. This integration of geospatial studies and AI helps machine learning mimic human spatial reasoning and dynamics to better understand environmental and geographical impacts. This could lead to hyper-local and instantaneous weather forecasting, real-time wildfire detection, and other capabilities that could make environmental conservation and planning more seamless.

Here’s a look at GEOAI at play:

  • Google’s Machine Learning for Precipitation Nowcasting from Radar Images performs weather forecasting using real-time data instead of hours-old data.
  • The city of Boston will use data from satellites in the TreeTect pilot to improve tree equity and anticipate tree maintenance tasks.
  • Scientists from Stanford University developed a deep-learning model that maps fuel moisture levels across 12 of the US’ Western states, making it easier to predict where wildfires are likely to ignite and spread.

Transportation transformation

Growing concern for pollution and congestion is leading to disruptive innovation in transportation technology, policy, and infrastructure, which will radically change how we transport people and things in the future. Crowded freeways, slow delivery times, and an urgency to counteract climate change all demand revolutionary change in the transportation industry.

Urban transportation is central to the effort to slow climate change, with plenty of opportunities for growth and innovation. Home to more than half the world’s population, cities account for more than two-thirds of global carbon dioxide emissions. Transportation is often the most prominent and fastest-growing source of emissions and is the U.S.’ second-largest source of greenhouse gas emissions.

Here’s a look at transportation transformation at play:

  • Though not quite a reality yet, the idea of a hyperloop has long captivated society, with companies like Virgin and The Boring Company working towards its creation. The technology exists to create the ultra-fast transportation concept, but there are still significant hurdles to overcome.
  • TuSimple has created autonomous trucks, which promise improved safety, efficiency, and sustainability. Its trucks allegedly shaved 10 hours off a 24-hour run.
  • Florence has implemented smart trams, which could shape future transportation for other European cities.

3D-printed electronics

Advances in 3D printing technology that allow for voxel-level specification of materials, combined with improvements in metal substrates, will enable electronic components to be printed at the same time as durable parts, rather than being added as a separate assembly step after printing. These capabilities could allow electronic devices to be 3D-printed on demand as all-in-one elements, with no assembly required. This would minimize production costs and time and create an opportunity to reduce the size and weight of electronics.

Here’s a look at 3D-printed electronics at play:

  • Japanese CAD and 3D printing company SOLIZE uses HP 3D printers to make out-of-production spare parts for NISMO, the motorsport division of Nissan
  • Optomec’s Aerosol Jet printing technology enables 3D-printed electronics using aerodynamic focusing.
  • Nano Dimension’s Dragonfly IV 3D printer can generate entire circuits in one step.
  • Researchers at the University of Florida have developed a method of printing copper on fabric, a milestone for wearable electronics.

Considering the state of our world, futuristic thinking is a necessary skill we all need to learn and practice. With the constant and rapid pace of change, everyone should be honing their futurist skills. And thinking like a futurist isn’t reserved for a select group of people. It is a fundamental skill set that anyone can learn.

This is not something all of us do naturally, though. Only a small percent of the population thinks and plans for the future. In fact, only 35% of Americans regularly think about their five-year future. Those who aren’t thinking of their futures are disadvantaged over those who do. If we want to stay one step ahead in our fast-paced world, and if we’re going to move forward and create the future we want, we must adopt long-term, futuristic thinking.

To help you get started, here are three essential practices that I have found very useful in my career as a futurist:

  1. Monitor shifts — Pay attention and understand what’s happening in the world around you. Notice the small changes that create new needs. Keep an eye on these weak signals and any others that appear.
  2. Visualize future outcomes — Start with your vision for the future and work backward from there, not the other way around. What was the catalyst for your vision of the future?
  3. Adopt an innovative mindset — Have a “can do” attitude and be unstoppable. Embrace everything as a learning opportunity, even failure.

The more you think like a futurist, the better you can create the future you want.

Which of these weak signals are you interested in? Any others you are monitoring? Share your thoughts with me in the comments.

Blog Innovation Trends

How to Think Like a Futurist

The following is an excerpt of article that was first published in the Summer 2021 issue of HP’s Innovation Journal:

The world around us is changing and advancing at breakneck speed. From cars that can see around corners to robots on Mars, hyperloop travel, and artificial intelligence (AI) that can write a poem like Coleridge or fiction like Kafka, keeping up can be overwhelming. For business leaders, innovators, and organizations, the central question becomes: How do we lead this change, rather than being led by it?

I’d posit that we all need to learn to think like futurists. Thinking like a futurist shouldn’t be reserved for a select group of people, but instead is a basic skill set that anyone can learn.

Tapping into your inner futurist requires that you stay aware of what’s happening in the world around you, and think through the long-term impact on countries, societies, industries, and our day-to-day lives. But it’s not a spectator sport; it also requires that you anticipate, plan for, and take action to create the future you want. It’s about monitoring shifts, visualizing outcomes, and adopting an innovation mindset.

Monitoring shifts

No one can predict the future, but understanding the global socioeconomic, demographic, and technological shifts that are shaping the world around us can help point the way. It’s important to understand how these trends will influence our human experiences — from how and where we work, to how we make things, to how we stay healthy, learn, and live our lives. Being aware of these shifts enables you to spot new opportunities, reach your goals, and make plans based on the world of the future, not the world of the past.

For example, prior to the pandemic, only a quarter of US workers did some work at home. During the pandemic that number skyrocketed to more than 80%. The future of work will undoubtedly see many jobs becoming primarily hybrid. Many employees will do their desk work at home or at coworking spaces, while offices transform into places employees go to collaborate and innovate as a team.

The pandemic and today’s geopolitics have also shone a light on the need for supply chains to become more flexible and resilient. As we look to the future, the inherently digital nature of 3D printing opens a world of possibilities for manufacturing to become more digitized and sustainable as well, and for products to become more personalized.

Similar shifts are happening in healthcare, education, retail, and across our business and personal lives in general. Moreover, the role of business in society is changing, as customers increasingly expect more from the companies they engage with, and companies must stand for more than the products they sell.

Read more in the Summer 2021 issue of HP’s Innovation Journal.

Blog Innovation Leadership Uncategorized

How to lead a remote team during COVID-19

Our “new normal” requires leaders to rethink how they lead. These tips will help you lead a team that’s working from home.

Internet access has also become congested because more people are online during the day performing their jobs and attending school virtually. Carriers have reported their customers are using more voice calls and many of them are using Wi-Fi rather than cellular. In addition, Facebook has seen a 70% weekly increase in the number of people using Facebook Messenger for group video calls.

As the pandemic continues to alter our everyday lives, we’ve become reliant on services that allow us to work from home. Meetings are happening on Microsoft Teams, Zoom, and Google Hangouts. In fact, Zoom reported daily users spiked to 200 million in March, up from 10 million in December.

Creating a culture of a high-performing team can be challenging under normal circumstances, but what does it look like during a global pandemic? As a leader how can you adapt your leadership style and processes to meet your employees’ new expectations? Here are the top tips I have learned through my own experience leading a global, remote team.

  1. Communication is crucial.
    Implement tools that allow you to communicate easily. We use Skype and Microsoft Teams, and find it great to stay in touch with quick messages and updates on projects without cluttering our email inboxes.

    You can use a messaging tool to encourage socializing, too. Create a group in Whatsapp or whichever messaging platform you use that is not specific to work. Keep the “water cooler conversations” going and allow your team a space to share their non-work related content.

    For updates that require more than an email or chat message, hold daily or weekly stand-ups. We use Zoom for video meetings and find it a great tool to hold virtual meetings. Your team can share what they are working on, any challenges they may have, and ask questions. If you plan on having your stand-up as a video call, make sure your team knows that ahead of time and that everyone joins using video.  It not only makes the meetings more engaging, but it also discourages multitasking. 😃

  2. Manage expectations.
    Does your company require your team to be online during certain hours of the day? Communicate that with your employees, don’t assume they will follow the same hours as when they were in the office.

    If you don’t already use a project management tool, consider implementing one so that your team can keep track of upcoming deadlines, project statuses, and the items on their plate.

  3. Be flexible.
    Work isn’t the only thing in our lives that has been disrupted by COVID-19. For those who are at home with their children, caring for a loved one, or experiencing another life event that is disrupting their normal, flexibility is paramount.

    One important aspect of emotional intelligence I’ve discussed in the past is empathy. It’s the ability to put yourself in someone else’s shoes and understand how they might feel in a certain situation. As leaders, the more we’re able to relate to others, the better we help them feel understood and inspired.

    Check-in with your team on a regular basis and be fully present in your conversations, so you can make genuine connections and better understand their point of view. Once you have checked in, be flexible in creating a schedule and culture that considers their needs and current demands they’re facing.

  4. Cut yourself some slack.
    Remember, you and your team are going through massive changes in a quick time frame, so don’t expect things to be perfect from the start. Focus on small changes to start, and you will build a stronger and more supportive work culture.

    Don’t forget to take care of yourself, too. We’re all in this together.

Are you leading a remote team? I’d love to hear about your experience and any tips you’ve learned along the way. Please share them in the comments below.

Blog Innovation Leadership

HP Megatrends 2020 Refresh

Staying ahead of constant requires a keen understanding of the global forces that will shape our human experiences and business decisions

The amount of change happening in the world today is accelerating, creating a continuous challenge for how companies stay ahead of it all, decide where to invest, think about the future, and innovate in ways that enable them to do the disrupting, instead of being the ones disrupted.

Blog Innovation Leadership Trends

Preparing for Gen Z as a Futurist

As a futurist, my job is to anticipate change and stay on top of current trends. There’s a new generation entering the workforce – Generation Z. Following Millennials, this generation includes those born between 1995 and 2010. While being defined as the most ethnically-diverse and largest generation in American history, Gen Z also grew up surrounded by technology, also making them the most tech-savvy generation.

I’ve previously provided some thoughts on thinking like a futurist and today, we’re diving deeper into the role Gen Z plays in the future. Here are my tips for how to collaborate with Gen Z:

1. Put yourself in their shoes

It’s important to acknowledge the obvious differences that divide each generation. For example, Gen Z grew up in a post-9/11 world with new technology and completely different childhood experiences than those of previous generations. With technology constantly at their fingertips, this generation of “digital natives” have had nearly lifelong access to boundless amounts of information at the drop of a hat. In fact, 97% of Gen Z have smart phones and spend more than 4 hours a day online.

And because they’ve never spent a day offline, they are acutely aware of the issues and challenges happening in the world around them. As a result, they are 54% more likely to say they want to have an impact on the world as compared to millennials. Also noteworthy is their attitude towards work and employers; almost half consider what the company does to make the world a better place as important as the salary.

By becoming familiar with Gen Z, and by understanding the different era and experiences they’ve grown up with, you’ll gain a better understanding of how to effectively collaborate with them. Whether it’s through asking questions, doing research, or understanding current trends, you won’t fully see eye-to-eye with this generation until you put yourself in their shoes.

2. Pay attention to what’s important

In the next decade, Gen Z is expected to cause an influx of roughly 60 million job seekers, effectively transforming the workplace. Concerning their careers, Gen Z-ers are very driven and competitive. Nothing motivates them more than achieving success and being rewarded for their good efforts. They value skill development and appreciate feedback, as they are always hoping to improve their performance. A controversial topic amongst Gen Z is the debate over work-life balance. It can be argued that this generation struggles the most with this – 24% say they feel guilty for taking time off work. On the other hand, 39% view work-life balance as a top priority when choosing an employer. Knowing these statistics as an employer can help foster a healthy work environment for future employees.

When choosing where to work, Gen Z will base their decision on the company’s values. This generation’s passion for sustainability, diversity, and inclusion reflects in their expectations for their future employers. Studies show that 77% of Gen Z believes a company’s level of diversity affects their decision to work there.

3. Stay up to date on trends

As any futurist knows, one of the most important ways to prepare for the future is to stay up to date with the latest trends. This applies to Gen Z trends as well. The more informed you are, the more prepared you will be to work with this generation.

Here are some resources for futurists to better understand Gen Z:

  1. After the Millennials
  2. Gen Guru
  3. Gen Z Insights
  4. Generational Differences in the Workplace Infographic
  5. Looking Ahead to Generation Z

We can all benefit from learning from one another. As this new generation enters the workforce, preparing through a lens like this will allow us to better understand and support them in their journey as they embark on this new chapter.

Blog Entrepreneurship Innovation Leadership Trends

Are you ready for the future?

As the pace of change continues to accelerate, one thing is certain. The future will look very different than it does today. I believe this accelerated innovation and the Megatrends driving it will have a sustained, transformative impact on the world in the years ahead — on businesses, societies, economies, cultures and our personal lives.
 
This change is inevitable, and those that anticipate and embrace it will be the revolutionaries of the experience age. In fact, adapting to the changes is the difference between leading change and being led by it. Unfortunately, there is no magic pill. No silver bullet. It takes dedication and thought. So, how can you lead the way and future-proof yourself?

1. Adopt an innovation mindset

When I was in college, a single computer took up an entire room. Yes, am dating myself a little here…. Now, we hold computing devices in the palms of our hands. In fact, we have more computing power in our pockets than all of NASA had when they put the first man on the moon in 1969.
 
Innovation is significantly shaping our world. And it’s the number #1 topic I’m most frequently asked about. Whether it’s at the HP offices, at speaking engagements, or when I attend conferences, people want to know how they can tap into their own inner innovator, and spark innovation at their offices.
 
Innovation is an attitude. As an innovator you need to believe you can change the world, that if you keep working on a problem you will eventually find a solution, and that anything is possible. Innovators have a passion to make things happen. They relentlessly take action.

Start with small things. Have lunch every week with someone outside of your team. Talk to them about what they do and how they do it. Innovation is about leveraging diversity, and the more you know about more things, the better you will be able to innovate.

Write down your ideas. Sometimes the simple act of writing things down can bring your ideas to life. You never know when that list will come in handy.
 
Once you become comfortable with those, move on to larger mindset shifts.

Question your assumptions about everything. Many times, the “right” way to do things can be altered and improved, it just takes someone to question the underlying assumptions. Ask yourself, how can this be improved? How can we make it better?

2. Keep learning or unlearning

“In times of change, learners inherit the earth, while the learned find themselves beautifully equipped to deal with a world that no longer exists.” –Eric Hoffer

If you have a fixed mindset, your qualities are carved in stone. If you lack a skill, you will continue to lack it. However, when you adopt a growth mindset, you can grow and change through persistence and experience. With a fixed mindset, you can be easily overwhelmed with the future’s uncertainty, but the future belongs to those who can adopt a growth mindset and keep learning.

I’m currently learning about Quantum Computing by reading “In Search of Schrödinger’s Cat: Quantum Physics and Reality”.

I’m very interested in how the line between science and philosophy is blurring. It seems where science doesn’t have all the answers (e.g. quantum mechanics and the true nature of reality), philosophy comes back to the fore to help us imagine the possibilities that we hope science might one day prove out. Consider Einstein’s original thought experiment about sitting on the end of a light beam (philosophy) and how that led him to the special theory of relativity (science). Both are equally important for charting the human future in a world of accelerating change and technology.

3. Collaborate

A Nielsen study examined the impact of collaboration in the development stage of innovation. It showed ideas developed by teams of three or more people have 156% greater appeal with consumers than those developed by just one or two people who played a hands-on role.

Ideas developed by teams of three or more people have 156% greater appeal with consumers than those developed by just one or two people who played a hands-on role.

Connect with people in your field (current or desired) by discovering how they think and their vision of the future. When you get to know one another, you feel more comfortable sharing ideas and voicing your opinions, creating healthy collaboration.

4. Pay attention to emerging technology trends

Stay current on trends by reading, watching, and listening to sources you trust. As a futurist, my job requires a keen understanding of how the world around us is evolving, the global forces that are dramatically changing the landscape of markets and industries, and trends that are reshaping customer expectation. 
 
At HP, we’ve formalized our analysis and forecasting process into a body of work we call Megatrends, a systematic effort to identify the global technological, economic, and social currents that are influencing how people will live and work around the world in the future. Take a look at this year’s report that looks at how innovation and disruptions in economics, data, automation, and energy impact megatrends.

Personally, I stay on top of trends by reading the latest technology news, speaking with customers and industry pundits, paying attention to university and academic research areas, monitoring venture investing trends and start-up activity. I also draw from my personal experiences, media coverage, and public data sources.

It’s important to have a vision and desired outcomes in mind. Then explore how trends and technologies can help you realize those outcomes. Ongoing problems the world is facing, like poverty and climate change, cannot be solved with short-term thinking. If we want to move forward and create the future we want, we must adopt long-term, futuristic thinking.

Once you’ve identified the trends, come up with proactive statements about where you think the future is going. This is something that true disrupters do. So … ask outlandish questions, free your mind, and push yourself outside of your box. The future is yours to create.

5. Give yourself a break

After all that, are you feeling a bit frazzled? We spend hours pondering how we can stay ahead of this change instead of being led by it. Even if we could predict the future perfectly (which, of course, we can’t), we need to be willing to reinvent ourselves continuously as all of this change in our world occurs.
 
It’s okay to take a break from future-proofing yourself. Read a book. Take a walk outside. Listen to your favorite music. Give your brain a chance to breath and recharge.

Our future will be transformed by people like you, who are strategic thinkers, quick to innovate, and passionate. What do you think? What skills or mindsets will we need to adopt today for the future? Sound off below. 👇

Blog Innovation Trends Videos

4D printing and a world of smart materials

 

Just when you thought a new era of disruption is upon us, another one comes right behind it. The latest disruption, 3D printing, is by some estimates predicted to have a greater impact on the world over the next 20 years than all of the innovations from the industrial revolution combined. 4D printing is a further evolution of 3D printing and is set to completely alter how we create and produce materials by adding the dimension of transformation over time into the creation process.

3D printing is currently transforming the manufacturing of everything from shoes, cars, space stations parts, buildings, and much more by allowing us to produce custom materials and products on demand. 3D printing leads to quicker response, reduced lead times, swift innovation, rapid manufacturing, reduced overhead, mass customization, mass production, use of unique materials, and economies of scale, according to Deloitte.

1*cziY7ble7CxNEmDh1_Ja-Q

The technology holds so much promise that some companies are looking to build entire cities from massive 3D printers. A 3D-printing crane dubbed the Minitank can layer up to 2,153 square feet of concrete per day for the construction of buildings, making it 50 percent faster than traditional construction methods.

As 3D printing is now steadily changing the way we produce items, 4D printing is evolving right behind it. 4D printing involves 3D printing objects that can self-assemble and transform based on some external stimuli. For example, a table that assembles itself when you touch a part, or an airplane wing that transforms with wind speed, or a temperature-activated cardio stent. 4D printing is similar to 3D printing since it uses the same techniques of computer-programmed “printing” of layered materials to create a three-dimensional object. However, during the fabrication process of 4D printing, the printed produce reacts to external stimuli — heat, water, chemical, pressure, etc. — to self-assemble or change.

MIT’s Self-Assembly Lab is at the forefront of the 4D printing movement. The lab was created to see how researchers could 3D print an object without relying on sensors or chips. In order to make something “4D” — assemble itself or change precisely under certain conditions — a precise geometric code is used based on the object’s angles and dimensions, as well as measurements that dictate how it should change shape when interacting with outside forces.

“Normally, we print things and we think they’re done,” said Skylar Tibbits, a research scientist at MIT. “That’s the final output and then we assemble them. But we want them to be able to transform and change shape over time. And we want them to assemble themselves.”

Tibbits sees numerous uses for 4D printing technology, including footwear that can adapt to particular sports: “If I start running,” he said, “[the sneakers] should adapt to being running shoes. If I play basketball, they adapt to support my ankles more. If I go on grass, they should grow cleats or become waterproof if it’s raining. It’s not like the shoe would understand that you’re playing basketball, of course, but it can tell what kind of energy or what type of forces are being applied by your foot. It could transform based on pressure. Or it could be moisture or temperature change.”

Numerous organizations are pouring money in 4D printing research and development, including Airbus SAS who is using 4D-related “smart” material that reacts to temperature to cool jet engines and a wing that morphs according to aerodynamic conditions to decrease air resistance. Briggs Automotive Company is developing a morphable wing for its supercar that can adjust to external weather conditions and automatically adjust itself to provide maximum downforce to the car.

“The ability to program a particular area of the material and be able to activate it through heat, water, chemical reaction, pressure and many other external influences to actually do self-assembly. Altogether these represent what we believe will be the next industrial revolution and a fundamental transformation in manufacturing overall.” — Shane Wall, HP CTO

The U.S. Army Research Center is developing a variety of applications including a soldier’s uniform that can alter its camouflage or provide more effective protection against poisonous gases or shrapnel upon contact. Plus, the U.S. Army gave a grant to Harvard University, University of Pittsburgh and University of Illinois to explore ways the military could use self-assembling objects, including the possibility of shelters or bridges that assemble themselves.

Shane Wall, our chief technology officer at HP believes, “That is what 4D printing is about, self-assembly. The ability to program a particular area of the material and be able to activate it through heat, water, chemical reaction, pressure and many other external influences to actually do self-assembly. Altogether these represent what we believe will be the next industrial revolution and a fundamental transformation in manufacturing overall.”

Wall said 4D printing technology is not merely a novelty, but a necessity due to increasing urbanization caused by world population growth that is expected to reach 8 billion people over the next 30 years. This will cause an increase in “megacities — or cities with populations over 10 million people — from 10 in 1990 to 41 over the next ten years. This rapid urbanization will put an incredible demand on manufacturing and the distribution of materials.

The 4D printing industry is expected to be worth upwards of $537 million by 2025 and grow by a CAGR of 42.95 percent between 2019 and 2025. This is being driven by the need to reduce the costs of manufacturing and processing in the face of an increasing focus to ensure a sustainable environment.

“A 4D printed product would incur lesser manufacturing, transportation, and handling costs, which, in turn, would lead to the saving of resources and efforts, thereby sustaining the environment,” according to a report by Grandview Research.

The primary materials segments used for 4D printing are programmable carbon fiber, programmable wood grain, and programmable textiles, with the programmable carbon fiber segment expected to be the largest segment in the overall 4D printing market, according to the Grandview Research.

Since programmable carbon fiber has high stiffness, low weight, and tensile strength, it can be beneficial for many industrial applications, says Grandview Research. It can be autonomously transformed by printing active material on flexible carbon fiber using heat as an activator and it doesn’t require complex electronics, actuators, or sensors.

4D printing to save lives

The healthcare industry is set to take advantage of 4D printing since 4D printed products will be responsive to body needs once ejected in the human body. This could be used for tissue engineering, self-assembling human-scale biomaterials, design of nanoparticles, and nanorobots for chemotherapy. A Frost & Sullivan report finds that 4D printing is still in its infancy and not yet ready for widespread use, yet the potential for the technology in the medical field is significant.

“The potential of this technology to create programmable biological materials that can change shape and properties can be a foundation for enabling smart pharmacology, personalized medicine, and programmable cells and tissues that could be employed in precisely targeted treatments for a number of diseases,” the report notes.

A researcher at the University of Michigan developed a 3D printed splint that can hold open airways of newborn children for two to three years, then absorb into the body. The device was successfully implanted in four babies. Medical researchers are also looking into using 4D biomaterials to help adults correct skeletal applications like facial reconstruction or rebuilding ears.

To read the rest of the article, visit HPMegatrends.com.

Blog Trends

The future of transportation: How AI is helping vehicles think

What happens when computers become intelligent? We are just now beginning to see what this future may look like, as gains in artificial intelligence (AI) are increasing. From intelligent self-driving cars, to AI-powered robot surgeons and smart factories, computers and machines that can learn and adapt will soon change the world as we know it.

While we are still in the nascent phase of AI technology, billions of dollars are being spent on research and development, helping to accelerate AI advancements. IDC predicts AI spending will increase by more than 50 percent year over year and reach $57.6 billion in investments by 2021.

One industry poised for massive disruption from AI-led technology is transportation. Leading automotive manufacturers and technology companies are in a heated race to develop fully autonomous vehicles (AVs) for use as taxis, commercial transportation, personal transportation and more.

All major car manufacturers are currently exploring AV technology. Each day in Arizona, hundreds AVs developed by Google’s Waymo, Lyft, General Motors and Intel roam the streets of Phoenix and other cities. Arizona lawmakers intentionally created minimal regulations for AVs in order to attract AV-related companies, which encouraged a sort of tech boom in the state. Safety advocates have criticized the state’s lax approach, claiming that more regulations around safety, auto cybersecurity, insurance and privacy have not been worked out.

While AVs for personal transportation have garnered a great deal of attention, AI is now disrupting virtually all other areas of transportation. Uber, Waymo and other companies are testing and using autonomous cargo trucks to deliver goods. GE transportation is actively using AI to develop “intelligent” locomotives to improve efficiency of rail transport and Hitachi is using AI to reduce power consumption. Major airline companies already use autopilot technology to do most of the work once a plane is in the sky and can even land a plane in inclement weather. Now they are researching how AI can replace more of a pilot’s responsibilities.

AI is even having an impact on city infrastructure and planning of cities. The U.S. Department of Transportation issued a call for proposals from cities looking into smart infrastructures. It will award 40 million dollars to a city that can demonstrate how to solve critical municipal challenges using innovative transportation technologies, data and applications.

“It is very clear to us that autonomous technology will fundamentally change the industry,” said Michael Ableson, GM’s vice president of global portfolio planning and strategy. “There is no greater impact on the industry than self-driving cars.”

Enjoying this article? Read The butterfly effect of self-driving cars

The brains behind self-driving vehicles
Soon, we may well see the road filled with AVs. According to WinterGreen Research, over 90 million autonomous-capable consumer vehicles, cars and light trucks will be on the road worldwide by 2023.

In order for this to happen, a fully functioning, safe AV needs an enormous amount of computing resources, power and AI that can sort through large amounts of data in milliseconds. The biggest challenge facing AVs is to improve the software powered by machine learning and AI to correctly interpret data that is fed through the car’s sensors. It needs to safely drive a vehicle through various weather scenarios and identify and respond to other cars, animals, pedestrians, bike riders and more. In other words, the AI that controls self-driving cars needs to be error-free. “This is not a recommendation engine for Netflix,” said Danny Shapiro, senior director of automotive at chipmaker Nvidia. “The AI has to be spot on.”

AI is already being used for AVs today, including Tesla’s Autopilot system that helps drivers navigate highways and parking lots. Tesla claims every vehicle it produces has the ability for complete, autonomous driving, yet it will only be activated when the necessary software and government regulations are in place.

Cameras inside certain vehicles now identify drivers and track eye position to see if the driver is distracted or asleep. Cars also now identify and predict potential cross traffic danger. Auto braking features that prevent collisions are in place. In fact, if you have a 2017 car, it most likely has level two partial automation features, which can be steering assistance and accelerating or decelerating under certain situations, as defined by the Taxonomy and Definition for Terms Related to On-Road Motor Vehicle Automated Driving Systems. The next three levels in the classification system are all based on vehicles with automated driving systems that monitor and respond to the environment.

As we continue the road to AI-enabled AVs, here are some other exciting details that are expected to emerge in the coming years:

Automotive self-diagnostics and maintenance
As automobiles become more like computers with wheels, they are increasingly becoming connected and, with artificial intelligence capabilities, will predictively identify maintenance needs. By combining data from advanced Internet of Things sensors, maintenance logs and other external sources, AI will help with better prediction and avoidance of machine failure, according to McKinsey. This could reduce maintenance costs by up to 10 percent.

Predii, a company that provides a platform that enables organizations greater efficiency for repairs and maintenance, predicts that connected cars will be a source of high-frequency data for predictive and proactive maintenance.

“The availability of continuous streams of data from vehicles will empower vehicle monitoring businesses which are responsible for continuous health checks of your vehicle or fleets of vehicles,” according to a white paper by Predii. “Intelligent repair solutions will monitor check engine lights, diagnostic trouble codes, symptoms and data from advanced driver assistance systems.”

Automated cars are programmed to obey laws
Imagine intelligent cars that can drive somebody home who has consumed too much alcohol. Or takes over the wheel if somebody falls asleep. One of the key predicted benefits of having AVs on our roadways is the reduction of traffic accidents. In 2017, there were an estimated 40,000 traffic fatalities in the U.S., with more than 90 percent of them caused by human error, according to the National Safety Council.

Self driving cars are far better than humans at obeying traffic laws, since they are programed to do so. They don’t text and drive, or drive under the influence of alcohol, or drive too fast, which makes them much safer than humans.

Government traffic planners are optimistic that AVs won’t go over the speed limit, which will produce more cohesive and calm roadways with fewer accidents, according to a report last year on speed limits by the National Conference of State Legislatures.

Car Rental Companies become Self-Driving Car Fleet management operators
If a car can drive itself, do we really need to own our own vehicle? Can’t we call Uber to pick us up in one of their AV taxis? That’s the question posed by various automakers, technology and rental car companies, who envision a near future full of “robot taxis” through a ride sharing or rental car service. This “on-demand autonomous” vehicle is a vision of Michael Ableson, GM’s vice president of global portfolio planning and strategy. And it’s why GM paid $500 million for a stake and a strategic alliance in Lyft, the second biggest ridesharing service behind Uber. Ford isn’t far behind, since in August 2016 the company announced a “high-volume, fully autonomous vehicle for ride sharing” by 2021.

With a fleet of AVs, car-sharing companies are expected to have a coherent view of an AV fleet, monitor and manage it, detect issues and enforce policies. Operators can gather data of each individual vehicle including location, mileage, fuel consumption, driving behaviors and even if a door is left open. The AVs can then be remotely controlled to drive to service stations for repair and refueling.

Reroute traffic based on congestion, accidents, etc.
Google maps and other map-based apps have already helped road warriors find the shortest route possible to their destination. As AVs include greater connectivity, the AI behind it can gather data regarding traffic patterns, accidents and slows downs and appropriately — and automatically — reroute for optimal travel. This will help to ultimately lessen traffic congestion.

Tesla’s complete self-driving system will use GPS technology to find the optimal route to its given destination. If the car isn’t given a destination, it can check the owner’s calendar to determine the best destination or take the owner home.

Vehicles as “digital living environments”
It now takes the average U.S. worker 25 minutes to travel to work, according to the U.S. Census Bureau. AVs are expected to free up time for passengers to focus other tasks, including work, socializing, viewing entertainment, etc. Bosch has created a show car to display the company’s “digital living environment” inside AVs. It features large-surface monitors with the ability to have video conferences, display real-time traffic and weather information, email accessibility and entertainment options.

“Alongside the home and the office, the car will become the third living environment and a personal assistant,” said Bosch CEO Volkmar Denner.

Autonomous truck services
In October 2016, the world’s first successful autonomous truck delivery was completed when an Uber truck carried 50,000 cans of Budweiser beer over a distance of 120 miles from Fort Collins to Colorado Springs, CO. Now Uber’s autonomous trucks are delivering goods throughout Arizona. Other AV companies are following suit.

A report by the International Transport Forum claims autonomous delivery vehicles will save costs, lower emissions and improve road safety, compared with trucks operated by humans. New autonomous trucks will have the ability to perform a host of delivery duties including pick up garbage, deliver packages and food, and a numerous other services. All these services can be optimized through advanced logistics for traffic flow.

Public transportation safety and usage optimization
Public transportation also stands to benefit from the use of AVs and the associated logistics operations systems.

In Helsinki, Finland, trial is underway where an autonomous bus transports up to a dozen passengers at a time through a quarter-mile route with restaurants and saunas. The city is expected to expand the trial and provide autonomous bus services throughout the city, in order to measure customer response and basic operations data.

“There’s a lot of demand to solve the last-mile problem,” said Harri Santamala, the city’s project coordinator, referring to the challenge of transporting passengers from centralized transit hubs to their final destinations. “I think this is something we could do with automatic buses. On a real-time basis, we can adjust how they drive and where they make the connection. We’ve learned with this pilot that you can be flexible and synchronize with this technology. We could scale this up to the entire fleet.”

Metro Magazine suggests numerous benefits to a municipal transit system powered by autonomous buses:

  • Trip-planning information is integrated across modes and agencies (public and private), so the general public has the ability to evaluate their travel options with comprehensive information on travel time, cost, environmental impact, and more.
  • Real-time schedules for all transportation modes are centrally available.
  • Vehicles and transit schedules are “right-sized” so fleets are used effectively and there are no more empty buses.
  • Fare payment is made electronically and only one payment is needed for each whole trip.
  • Travel times are generally predictable and well-communicated.
  • Lower income and people with disability populations have access to all of these services.

The future of AVs are near
A world of intelligent vehicles is no longer a novel science fiction idea, but a near future. Passenger busses, taxis, personal vehicles, airplanes, trains and more are set to improve the way we get around. Ford, GE, Volkswagen, Audi, Toyota, Ford, BMW and Nissan are all hard at work creating and testing AVs they say will be road ready by 2020. And the U.S. Secretary of Transportation stated at the 2015 Frankfurt Auto show that he expects driverless cars to be in use all over the world within the next 10 years.

This AI-driven transportation revolution is expected to make our roadways safer, ease traffic congestions, make our transportation systems more efficient and make transportation more enjoyable. And, the trend toward urbanization might be reversed as AVs give people more time to work and be productive.

AI’s potential impact on transportation is immense. Advancements will continue to reshape the industry, how we drive, deliver and ship goods on earth and possibly in space in the future. Get ready to start your AI-powered engines.

 

Blog Innovation robotics Trends Videos

Brains, brawn and big business: AI and robots reshape the workplace

Automation technology is moving into the workplace with unstoppable momentum. As bots and robots take on more kinds of tasks, will they eliminate jobs? Or will they instead generate opportunity for workers to leverage their own strengths and manage their tireless mechanical colleagues?

In today’s workforce a factory line worker, a university professor, and a customer service rep are guaranteed to have one thing in common: a job that will be transformed by the presence of robots and AI in the coming decade. Will that worker be able to change along with it?

Blog Innovation Trends