Second Brain AI

How Corporate Venture Capital is Reshaping Innovation

The corporate venture capital landscape is undergoing a fundamental transformation, driven by evolving economic conditions, new organizational models, and the increasing convergence of internal R&D with external innovation partnerships.

As we navigate through 2025, the data tells a compelling story of how CVCs are not just adapting to change but actively reshaping the innovation ecosystem.

The Numbers Don’t Lie: CVC’s Growing Influence

The momentum behind corporate venture capital continues to accelerate. Global CVC-backed funding reached $65.9B, a 20% YoY increase in 2024. More telling is that CVCs made up 28% of all active investors in 2024, with a shift toward strategic early-stage investing rather than concentration in large late-stage rounds.

This shift represents more than just increased funding. It signals a strategic evolution in how corporations approach innovation.

New CVC Models Emerging in 2025

The Rise of Corporate Venture Studios

The traditional CVC model of pure investment is giving way to more hands-on approaches. Venture studios combine the entrepreneurial spirit of creating new ventures with the scale and resources of corporations. This hybrid model is particularly attractive to corporations seeking deeper control over innovation outcomes.

Corporations across industries are adopting venture studio models to create new businesses from scratch, while leveraging their existing capabilities and market positions.

Accelerator Programs with Strategic Focus

Corporate accelerator programs have evolved into strategic alliances that provide startups with frameworks for growth, product innovation, and market access, rather than just funding and mentorship.

These programs are becoming more sector-specific and deeply integrated with corporate strategic objectives. Companies are using accelerators not just to scout for external innovation, but to create systematic pathways for bringing that innovation into their core business operations.

Innovation Partnership Platforms

A new model emerging in 2025 involves corporations creating comprehensive innovation platforms that combine multiple touchpoints — venture capital, accelerators, partnership programs, and even acquisition vehicles — under unified strategic frameworks. This approach allows for more flexible engagement with startups at different stages of maturity and alignment. An example of this would be the Microsoft for Startups program, which includes a founder’s hub, investor network, regional accelerators, and strategic partnerships.

Economic Shifts Reshaping CVC Strategies

The macroeconomic environment has fundamentally altered how both VCs and CVCs operate right now, with more selective investments emphasizing strategic value, lean models, and clear pathways to profitability. Yet CVCs still maintain their more holistic strategic views of their investments.

Strategic Value Over Pure Returns

Unlike traditional VCs focused primarily on financial returns, CVCs are increasingly prioritizing strategic value creation. This shift has several implications:

  • Portfolio Construction: CVCs are building portfolios that complement and enhance their core business capabilities, rather than pursuing maximum financial diversification.
  • Investment Timelines: Corporate investors can afford longer development cycles when investments align with strategic objectives, providing crucial runway for deep-tech and complex innovation projects.
  • Market Validation: CVCs can offer startups immediate access to enterprise customers and market validation opportunities that traditional VCs cannot provide.

While traditional VCs face pressure for quick returns as markets recover, CVCs may be better positioned to take advantage of the strategic opportunities created by market dislocations.

The Blurring Lines: Internal R&D Meets External Innovation

The most significant transformation in corporate innovation is the dissolution of boundaries between internal R&D and external venture partnerships. This convergence is creating new models of collaborative innovation that leverage the best of both approaches.

Integrated Innovation Ecosystems

Modern corporations are creating innovation ecosystems where internal teams work directly with portfolio companies, sharing resources, expertise, and market access.

This integration goes far beyond traditional corporate-startup partnerships:

  • Shared Technology Platforms: Portfolio companies gain access to proprietary corporate platforms and APIs, while corporations benefit from rapid external innovation cycles.
  • Cross-Pollination of Talent: Employees move between corporate R&D teams and portfolio companies, creating knowledge transfer and cultural bridges.
  • Collaborative Product Development: Joint development projects between corporate teams and startups are becoming more common, leading to products that neither could create independently.

Toyota Open Labs is an open innovation platform that connects startups with various business units across the Toyota ecosystem to drive the future of mobility. The program focuses on key areas such as energy, circular economy, carbon neutrality, smart communities, and inclusive mobility.

From Venture Capital to Innovation Capital

This integration is leading to a new category that transcends traditional venture capital — innovation capital. This approach combines:

  • Financial investment with a strategic partnership
  • Technology licensing with joint development
  • Market access with co-innovation
  • Talent exchange with knowledge transfer

CVC-Driven Innovation Breakthroughs

AI and Machine Learning Revolution

Generative AI funding continues to grow rapidly, with funding in the first half of 2025 already surpassing the 2024 total. According to Bain & Company, Software and AI companies now account for around 45% of VC funding. Corporate venture arms have been particularly active in this space, not just as investors but as strategic partners providing data, compute resources, and enterprise distribution channels.

One notable example is the collaboration between corporate CVCs and AI startups. Examples of this include Salesforce investment in AnthropicMicrosoft’s investment in Databricks, and HP’s investment in EdgeRunner AI. These partnerships leverage corporate scale and customer access while benefiting from startup agility and innovation capabilities.

New Success Metrics

CVCs will increasingly measure success through strategic impact metrics rather than purely financial returns, tracking portfolio companies’ contributions to core business growth, new market creation, and competitive advantage.

The Innovation Imperative

Corporate venture capital is no longer just an investment strategy — it’s become a core component of corporate innovation infrastructure. The companies that succeed in leveraging CVC effectively will be those that view it not as a separate activity, but as an integral part of their innovation and growth strategies.

The data from 2024 and early 2025 clearly show that CVCs are not just surviving economic uncertainty, but thriving by offering startups something traditional VCs cannot: immediate access to enterprise customers, operational expertise, and strategic partnerships that can accelerate growth and market adoption.

For corporations, the message is clear: in an era of accelerating technological change, external innovation partnerships through CVC are essential for staying competitive and relevant. The question is not whether to engage in corporate venture capital, but how deeply to integrate it into your innovation strategy.

Blog Entrepreneurship
Humanoid robots

AI, Robotics & Biotechnology: 3 Game-Changing Technologies Transforming 2025

At the beginning of the year, I outlined 10 technology trends and weak signals I felt would have a transformative impact on 2025 and beyond. These emerging innovations represent not just incremental improvements but potential paradigm shifts that could fundamentally alter industries, economies, and societies.

These trends fall into three categories for me:

Game Changers are set to have a significant impact on industries, societies, and markets in 2025 and beyond. Will transform how we work, learn, and live.

Foundational Breakthroughs are major technological advancements needed for game changer technologies to succeed.

Weak Signal Wild Cards present the opportunity to be a future game changer or a foundational breakthrough but still in a nascent stage with a number of headwinds to overcome.

Today, I’m diving into the game changers — AI, Humanoid Robotics, and BioTech & Synthetic Biology, the opportunities and the questions they raise.

How will AI evolve beyond chatbots to digital companions?

Artificial intelligence is rapidly evolving beyond the familiar chatbot interfaces with which we’ve grown accustomed to. The next wave of AI development promises to fundamentally reshape how we work, interact, and live our daily lives.

Market Context: 77% of companies are using or exploring the use of AI in their businesses, and 83% of companies claim that AI is a top priority in their business plans. 

Will AI co-workers be your new colleagues?

The workplace of tomorrow will feature AI co-workers that not only answer questions but also actively collaborate on complex projects. These AI co-workers will understand context, maintain continuity across conversations, and contribute meaningfully to team dynamics. Unlike today’s AI assistants that operate in isolation, these systems will integrate seamlessly into existing workflows, attending meetings, managing projects, and even mentoring junior team members.

What This Means for You: Expect to see AI assistants to manage entire project workflows, attend meetings on your behalf, and maintain context across weeks or months of collaboration.

Can personalized AI become your next best friend?

Personalization is evolving beyond recommendation algorithms to AI systems that genuinely comprehend individual preferences, habits, and objectives. These personalized AI companions will learn from your behaviors, anticipate your needs, and adapt their communication style to match your personality. They’ll serve as personal advisors, creative collaborators, and decision-making partners across every aspect of life.

Will digital clones become a digital you?

Perhaps the most intriguing development is the emergence of digital clones — AI representations that can think, speak, and act like their human counterparts. These aren’t simple avatars, but sophisticated AI systems trained on personal data, communication patterns, and decision-making processes. Digital twins could attend meetings on your behalf, manage routine correspondence, or even continue your work in your absence.
 
Andrew Ng, along with DeepLearning.AI and RealAvatar, created a digital twin of himself.

Can AI wearables offer you intelligence at your fingertips?

The integration of AI into wearable devices is creating new forms of ambient intelligence. Smart rings, glasses, and clothing embedded with AI chips will provide real-time insights, health monitoring, and contextual assistance without the need to reach for a phone or computer. These devices will understand your environment, mood, and activities to provide perfectly timed interventions and support.
 
For example, news recently broke that Amazon acquired Bee, an AI wearables startup best known for a $50 wristband and companion app that records and transcribes nearly everything a user (and anyone within earshot) says.

Will digital AI become physical AI?

The same large language models powering today’s digital AI systems are being adapted to control robotic bodies. AI-enabled robots are now able to comprehend complex instructions, reason about their environment, move around the world like humans do, and interact naturally with us. The result is robots that can be taught new tasks through conversation rather than programming, and learn like humans do, through experience.

What are humanoid robots, and when will they arrive?

The convergence of multiple technological advances is bringing humanoid robots closer to mainstream reality. This isn’t science fiction — it’s an engineering challenge being solved through incremental breakthroughs across multiple domains.
 
Market Opportunity: The global market for humanoid robots is projected to reach $38 billion by 2035.

Large Language Models and Robotics

The same large language models powering today’s AI chatbots are being adapted to control robotic bodies. These foundational models enable robots to comprehend complex instructions, reason about their environment, and interact naturally with humans. The result is robots that can be taught new tasks through conversation rather than programming.

What Is Multimodal Sensing and Understanding?

Modern robots are developing human-like sensory capabilities through advanced computer vision, tactile sensors, and audio processing. This multimodal approach enables humanoid robots to understand their environment in rich detail, perceiving obstacles, sensing textures, and interpreting commands or environmental cues. The integration of these senses creates a more intuitive and responsive robotic experience that mimics natural human perception.

How Will Recent Dexterity Breakthroughs Come Into Play?

Recent advances in robotic manipulation are solving one of the field’s longest-standing challenges: dexterous hand control for humanoid robots. New approaches to finger movement, grip strength, and object manipulation are enabling humanoid robots to perform delicate tasks that were previously impossible. From threading needles to preparing meals, robots are gaining the fine motor skills necessary for everyday tasks that require human-like dexterity.

Will Edge Computing Improve Real-Time Decision Making?

The deployment of powerful computing directly within robotic systems is reducing latency and improving real-time decision-making. Edge computing allows humanoid robots to process information locally, enabling faster responses and reducing dependence on cloud connectivity. This advancement is crucial for robots operating in dynamic environments, where split-second decisions are essential for natural human-robot interaction.

FREQUENTLY ASKED QUESTIONS — HUMANOID ROBOTS

Q: When will I be able to buy a humanoid robot? 
A: Limited commercial models will be available in 2025–2026 for businesses. Consumer models are expected by 2027–2028.

Q: What will humanoid robots cost? 
A: The manufacturing cost of humanoid robots has dropped from a range that ran between an estimated $50,000 (for lower-end models) and $250,000 (for state-of-the-art versions) per unit in 2023, to a range of between $30,000 and $150,000 currently.

Q: What jobs will humanoid robots do first? 
A: Manufacturing assembly, warehouse operations, elder care assistance, and household cleaning are the first target applications.

What are biotechnology and synthetic biology?

Biotechnology utilizes biological systems for practical purposes, while synthetic biology aims to design and construct new biological systems or redesign existing ones with specific functionalities, often by combining biological parts in novel ways. Synthetic biology, a subset of biotechnology, is creating new breakthroughs by merging biology with engineering design principles to create living systems with tailored functions. Unlike traditional biotechnology, which moves genes between organisms, synthetic biology enables building organisms from the ground up.

From creating therapies to treating diseases, to building microbes that allow plants to create their own fertilizer, synthetic biology is revolutionizing medicine, agriculture, and environmental advancements.

The convergence of biology and technology is creating unprecedented opportunities to design and manufacture biological systems. This field represents perhaps the most transformative frontier in science and technology.
 
📊 Market Growth: BCC Research Market Analyst predicts the global market for synthetic biology products was valued at $15.4 billion in 2023. The market is projected to grow from $19.3 billion in 2024 to $61.6 billion by the end of 2029.
 
Moving forward, artificial intelligence will likely supercharge synthetic biology, starting with molecular, pathway, and cellular design.
 
This immense potential comes with equally significant responsibilities for careful oversight and regulation. Effective management requires robust safety protocols, international coordination on standards, transparent public engagement about risks and benefits, and adaptive regulatory frameworks that can keep pace with rapid scientific advancement.

How will gene editing transform medicine?

CRISPR and next-generation gene editing technologies are moving beyond treating genetic diseases to enhancing human capabilities and creating new biological functions. The precision and accessibility of these tools are democratizing genetic engineering, allowing researchers to make targeted modifications with unprecedented accuracy and speed.

Current Applications: Gene therapies for sickle cell disease and beta-thalassemia are already FDA-approved. CAR-T cell therapies (using edited immune cells) have shown promising results for certain blood cancers.

Will cellular agriculture allow us to grow products without farming? 

The ability to produce animal products in laboratories is revolutionizing food production. Cellular agriculture bypasses traditional farming by growing meat, dairy, and other animal products directly from cells. This approach promises to reduce environmental impact, eliminate animal suffering, and create new forms of nutrition that were previously impossible.
 
Recent Breakthrough: The FDA has its first-ever approval for a safety consultation on lab-grown fish. Wildtype can now sell cell-cultivated animal products.

What is biomanufacturing?

Engineered microorganisms are becoming sophisticated manufacturing platforms capable of producing everything from pharmaceuticals to materials. 

These biological factories can be programmed to synthesize complex molecules, self-replicate, and even respond to environmental conditions. The result is a new form of manufacturing that’s both more sustainable, more adaptable than traditional industrial processes and which can create entirely new products.
 
For example, Cellibre is a US-based startup specializing in engineering cells to function as biomanufacturing units for a range of high-value products, from cannabinoids to pharmaceutical ingredients. By leveraging synthetic biology and precision fermentation, Cellibre creates efficient, scalable, and sustainable production methods.

Can gene synthesis write the code of life?

Advances in DNA synthesis are making it possible to write genetic code from scratch rather than just editing existing genes. This capability opens the door to designing entirely new biological systems, from custom microorganisms to synthetic organs. Gene synthesis is becoming faster, cheaper, and more precise, enabling researchers to prototype biological solutions rapidly.
 
This year, gene synthesis is experiencing significant growth and innovation, from advancements in synthetic biology, personalized medicine, and the need for high-throughput gene synthesis in research and industry. With trends like cost reduction, custom gene libraries, automation, and collaborations emerging, things are changing rapidly.

How could metabolic engineering optimize life’s processes?

Scientists are learning to redesign the metabolic pathways that power living cells, creating organisms optimized for specific functions. This might involve engineering bacteria to produce biofuels, modifying plants to absorb more carbon dioxide, or creating microorganisms that can break down plastic waste. Metabolic engineering is turning biology into a programmable platform for solving global challenges.
 
 Recent technical advances are leading to a rapid transformation of the chemical palette available in cells, thus making it conceivable to produce nearly any organic molecule of interest — from biofuels to biopolymers to pharmaceuticals.

TECHNOLOGY CONVERGENCE: What Happens When These Merge?

These three domains — AI, robotics, and biotechnology — are not developing in isolation. Their convergence promises to create entirely new categories of innovation:

  • AI-powered biological research: Robots conducting experiments 24/7, accelerating drug discovery
  • Biological materials for robotics: Self-healing robot components grown from engineered cells
  • Personalized medicine AI: Digital twins that predict your health needs before symptoms appear
  • Synthetic biology computers: DNA-based data storage and biological processors

What’s next?

The future is not a distant possibility.
 
It’s being built today in laboratories, startups, and research institutions around the world. The question isn’t whether these technologies will reshape our world, but rather how quickly and profoundly they will do so — and how we prepare for those changes.

The convergence of AI, robotics, and biotechnology isn’t just changing technology — it’s redefining what it means to be human in an age of artificial intelligence and synthetic biology.

Blog Futurism & Technology Trends

A Look at the Future of Advanced Compute and Clean Energy

The global technological landscape is undergoing a transformation driven by several converging forces.

These emerging innovations represent not just incremental improvements, but potential paradigm shifts that could fundamentally alter industries, economies, and societies.

While attention often focuses on established trends, it’s the subtle indicators — the weak signals — that offer the most valuable insights into future disruptions. These early indicators, though not yet mainstream, carry significant implications for strategic planning and competitive advantage.

What trends are we seeing?

The tech landscape is constantly shifting, composed of established trends as well as weak signals. Some trends may be game changers while others are foundational breakthroughs, along with a few wild cards still in their nascent phase. Here are some of those trends we are watching closely.

  • Artificial General Intelligence (AGI)
  • Humanoid robots
  • Quantum computing
  • 6G Networks and hyperconnectivity
  • Advanced compute
  • Nuclear energy
  • Biotechnology and synthetic biology
  • Next generation energy storage
  • Clean tech
  • Space tech

Today, I’m diving into two of these trends: advanced compute and clean tech and energy.

Advanced compute

Driven by AI, the increasing demand for computing power is colliding head-on with energy constraints that challenge this infrastructure build out. The result? We will need advancements in both energy efficiency and energy creation to keep up. Innovations such as microfluidic-cooled chips and composable computing architectures are driving computing efficiency and performance to new heights.

At the same time, data centers, cloud computing, and other high-performance applications are placing immense pressure on the global energy supply, pushing the need for cleaner, more reliable energy sources. We’ve seen numerous clean tech products and services focused on energy efficiency and sustainable reuse, and you can expect this trend to accelerate.

The question is: How quickly can we implement solutions that strike a balance between technological growth and sustainability? The interaction between computing and energy production is becoming one of the most critical challenges and opportunities of the modern era.

Compute is getting smarter — and hungrier

Computing advancements are reshaping industries, bringing both efficiency gains and new challenges.

The evolution from massive supercomputers to high-performance, compact chips makes processing power more accessible and scalable, enabling more sophisticated AI models, data analysis, and automation.

These innovations drive digital transformation across sectors, from healthcare to finance, but they also come with a steep energy demand. AI-driven applications, especially large-scale models, require immense computing power, leading to a surge in electricity consumption and an urgent need for clean energy solutions to support this growth.

Today, data centers account for 1% to 2% of overall global energy demand, similar to what experts estimate for the airline industry. When costs related to delivering AI to the world is factored in, that figure is expected to hit 21% by 2030.

Moreover, the International Energy Agency projects that data centers will use 945 TWh of electricity in 2030, roughly equivalent to the current annual electricity consumption of Japan according to Nature.

New energy sources, storage, and compute power

This is resulting in looking at new energy sources. Including a revival of nuclear power, which today accounts for nearly 10% of the world’s electricity but could grow significantly in the coming years due in part to its low-carbon footprint.

That’s why Small Modular Reactors (SMRs) from startups such as Nuscale and TerraPower are stepping into the spotlight as a potential answer to powering AI-driven data centers, offering a steady and reliable energy source that can be deployed more flexibly than traditional nuclear plants. These reactors can generate consistent, carbon-free electricity, making them an attractive option for reducing the environmental footprint of high-performance computing. SMRs can generate up to 300 MW per unit, which is significant when considering that a typical hyperscale data center requires 20–50 MW of power capacity, making them an ideal power source for AI-driven supercluster data centers.

Similarly, looking to other sustainable energy innovations in solar, wind, and gas will be needed for AI to advance. But it’s not just how we create power but also store and distribute it that will be key to new compute models. Solid-state batteries, or SSBs, could play a crucial role in grid storage applications needed to power the future computing needs of AI. While initially being developed for electric vehicles, these next-generation energy storage solutions have the potential to support gri-dscale applications, helping bridge the gap between fluctuating renewable energy sources and computing technology’s increasing power demands. In fact,the solid state battery market is expected to grow at a compound annual growth rate (CAGR) of 33%, with commercialization efforts ramping up.

Advanced Compute Breakthroughs

The energy challenge is also driving innovation in computing itself. New processor architectures designed specifically for AI workloads are dramatically improving performance while reducing energy consumption.

Neuromorphic computing, which mimics the efficiency of the human brain, shows promise for reducing energy requirements by orders of magnitude compared to traditional computing approaches. Research from Intel’s Neuromorphic Research Lab demonstrates that neuromorphic systems can be up to 1,000 times more energy-efficient than conventional architectures for certain AI workloads.

Quantum computing developments could revolutionize how we approach certain computational problems, potentially solving in seconds what would take today’s supercomputers years, all with a fraction of the energy.

These compute breakthroughs, paired with energy innovations, will be essential to sustainable AI growth.

The Power Players

The compute and clean energy race is full of power players. Here’s where innovation is heating up:

Advanced Compute

Clean Tech

Nuclear Energy

Next-Gen Energy Storage:

Unexpected outcomes

The AI energy equation could take unexpected turns in coming years:

What if AI algorithms emerge that drastically reduce computational requirements? Some researchers are exploring “small language models” that deliver impressive results with far less computing power, similar to how the human brain achieves remarkable efficiency.

IBM, Google, Microsoft, and OpenAI have all recently released small language models (SLMs) that use a few billion parameters — a fraction of their bigger LLM counterparts.

Geopolitical implications could be profound if certain nations successfully implement nuclear or other sustainable energy solutions for AI infrastructure while others remain reliant on fossil fuels. Countries that solve the energy puzzle could gain significant advantages in the AI arms race, potentially reshaping global power dynamics.

Could success in one domain–either compute efficiency or clean energy–accelerate the other in a virtuous cycle? Or might we face a scenario where breakthroughs in AI capabilities consistently outpace our ability to power them sustainably?

A global shortage of critical minerals like lithium could emerge as a limiting factor, constraining the growth of both advanced computing and clean energy technologies.

These minerals are essential for producing high-performing batteries, semiconductors, and energy storage systems–components that power AI data centers, renewable energy grids, and more.

AI’s promise could become a paradox if we don’t solve the energy storage issue. We will have smarter tools powered by unsustainable systems.

Moving forward

As computing power and energy needs evolve, the intersection of advanced compute and clean energy will shape the next wave of technological and environmental progress.

The race to develop sustainable, high-performance computing solutions is accelerating, and innovations in energy efficiency, storage, and nuclear technology will define the next decade.

Will we rise to meet the energy demands of intelligent machines? Or will innovation outpace our ability to power it? I want to hear your thoughts on what breakthrough or roadblock you see defining the next decade.

Blog Futurism & Technology Trends Innovation

A Day-In-The-Life with Generative AI Part 2: Maximizing Efficiency

Generative AI is becoming embedded in our everyday lives and transforming how we approach daily tasks and activities. With AI seamlessly integrated into our routines, we can experience efficiency and personalization that was once the realm of science fiction.

Remember Aiden, a 26-year-old living in San Francisco, who weaves AI into her daily life to optimize her productivity and enhance her experiences? She’s not the only one leveraging generative AI to create a more streamlined daily life.

Meet Dylan, a 40-year-old corporate executive who expertly uses AI to be more productive, achieve his fitness goals, and maximize his free time.

Morning Start

GIF showing AI-generated vivid dream replay. Very colorful

Dylan enjoys an AI-generated replay of a vivid dream he had, complete with visual and narrative details, providing creative inspiration and insights as he starts his day.

Digital news feed from AI

A customized AI-generated news briefing, with curated headlines and stories based on his preferences and current interests sets a focused tone for Dylan’s day.

bike workout screen with data from AI trainer

After the news briefing, Dylan’s personalized AI trainer analyzes his recent workout data and suggests a customized exercise routine, including specific cardio and strength training exercises to help him meet his fitness goals.

Efficient Afternoon

food shopping bag ordered by AI chef

Dylan’s AI Chef orders culinary ingredients according to his AI customized meal plan and schedules delivery, ensuring he has fresh produce and essentials for later, delivered by an AI robot personal shopper.

smart watch on wrist sending emails automatically

While in a meeting, Dylan asks his AI assistant to draft and send follow-up emails, including a proposal for a new project. This allows him to focus on strategic planning while the AI handles the communications.

Engaging Interactions

Virtual Reality meeting with Madam C.J. Walker

During a staff meeting, an AI-powered digital twin of Madam C.J. Walker joins Dylan’s team for a Q&A session. Walker shares insights into her entrepreneurship, philanthropy, and social activism approaches.

Virtual Tutor

Dylan takes a break to learn about AI advancements via a virtual tutor, exploring topics like machine learning algorithms and their practical applications in his industry.

Wearable device capturing meeting notes

His AI wearable device discreetly reminds him of key contacts he met earlier, captures important meeting notes, and follows up on promised actions.

Evening Relaxation

Chicken and broccoli meal prepared by a Robot

As he winds down from work, Dylan’s robot sous-chef prepares a gourmet dinner, following a recipe from his meal plan, while he relaxes and catches up on personal projects.

Personalized movie on a TV screen

Dylan ends his day watching a movie tailored to his tastes and current mood, with AI creating a personalized viewing experience with a custom storyline.


Generative AI can transform how to manage tasks, access information, and enjoy leisure time. It’s not just about efficiency; it’s about creating a more personalized and enjoyable experience.

How do you envision generative AI transforming your routine and bringing more ease and excitement into your daily life?

Blog Futurism & Technology Trends Innovation

A Day-In-The-Life with Generative AI: A Glimpse into the Future

Technology is seamlessly integrated into our daily routines, and generative AI will revolutionize how we live and work. Let’s imagine a day in the not-too-distant future where generative AI doesn’t just serve as an assistant but as an active participant in every aspect of your life.

Meet Aiden. As a 26-year-old living in San Francisco, Aiden spends her time working at a healthcare startup, socializing with friends, and focusing on hobbies like fitness and reading. Here’s a peek into what a typical day for her might look like with generative AI:

Morning Routine

AI trainer delivers a custom workout plan

Aiden likes to exercise before she starts her day. Her AI trainer sends her a customized workout plan each morning and adjusts her exercise plan based on her current fitness goals.

Digital twin of women attending a virtual meeting

After she finishes her workout, Aiden is ready to start her workday. A morning meeting pops up that could have been handled as an email. Aiden sends her digital assistant to attend the online meeting on her behalf.

Aiden’s digital twin participates by handling routine discussions and updates. As soon as the meeting is complete, her digital twin sends Aiden the meeting notes, key takeaways, and action items.

flying car over Oakland, CA

While her digital twin is in the meeting, Aiden takes a flying car to a face-to-face meeting in Oakland with her boss. With this commute, she cuts down on travel time and avoids traffic on the ground.

Robot feeding a black and white husky dog in a living room

Aiden attends her face-to-face meeting in Oakland, while a humanoid robot manages her household chores back at her apartment – feeding her dog, cleaning her kitchen, folding her laundry, and preparing her lunch. By offloading mundane tasks, Aiden can focus on more high-level tasks, such as in-person meetings and sharing her latest strategy ideas.

Health, Wellbeing, and Lunch

watch showing vital signs being captured and sent to an AI doctor

Aiden continues to work while wearing her AI wearable. Her AI doctor monitors her health statistics and raises a couple of irregularities to Aiden’s human doctor, who is based in Sacramento. When she receives the information, her human doctor sends a report to Aiden with key takeaways, updated prescriptions, and health information.

The meeting concluded in Oakland, and Aiden got a promotion! She’s thrilled and heads back to the City for lunch. On her way home, she sends a request to her AI Assistant to invite her friends for happy hour at her apartment to celebrate her promotion.

Once Aiden returns to her apartment, she enjoys the BLT her humanoid robot prepared for lunch while she answers work messages.

Happy Hour

Young people dancing in a living room

As Aiden’s friends arrive to celebrate her promotion, her AI generates a celebratory playlist for the happy hour.

Drone delivering pizza

Aiden’s friends toast her accomplishment, and in the background, her AI assistant places an order for pizza delivery which her humanoid robot receives and brings inside. Enjoy!

Evening Routine

AI assistant lowers the lights in a living room

Aiden’s friends head home, and her AI assistant adapts the lighting and sound to her relaxation needs, offering her a comfortable and personalized environment to unwind. She settles into the couch to watch a series curated specifically for her previous viewing preferences.

Person touching screen and selecting next day tasks for AI assistant

Before she goes to sleep, Aiden delegates the household and work tasks she would like her AI assistant, digital twin, and humanoid robot to complete tomorrow.


Generative AI promises a future where technology enhances our routines, making our lives more efficient and enjoyable. From handling mundane tasks to offering personalized experiences, AI is set to become an integral part of our daily existence, turning futuristic visions into everyday realities.

How do you envision generative AI reshaping your daily life as we move toward this future?

Blog Futurism & Technology Trends Innovation

23 Stats To Show Generative AI’s Role in Our Daily Lives

Generative AI is becoming a cornerstone of modern life, transforming various aspects of our daily routines and industries.

This powerful technology, capable of creating content, providing recommendations, and automating tasks, is poised to revolutionize how we work, learn, receive healthcare, and entertain ourselves.

As AI continues to evolve, its integration into our daily lives is becoming more seamless and impactful. A recent survey highlights this shift, with 78% of people believing that the benefits of generative AI outweigh the risks. This growing confidence in AI’s potential signifies a major shift in public perception, paving the way for broader adoption and innovative applications.

Take a look at these stats that show generative AI’s impact on our daily lives:

Workplace

  • 64% of businesses expect AI to increase productivity. Source: Forbes
  • AI will create 97 million new roles. Source: WeForum
  • 75% of knowledge workers use AI at work today. Source: Microsoft
  • 76% of professionals believe AI skills are essential for job market competitiveness. Source: Microsoft Cloud
  • 68.1% of companies reported increased use of AI tools for hiring. Source: RecruitBetter

Education

  • 54% of parents think AI could potentially have a positive effect on their child’s education. Source: National University
  • 60% of teachers use AI in their classrooms. Source: Forbes
  • AI in the education industry is expected to reach a CAGR of 40.3% between 2019-2025. Source: India AI
  • By 2030, artificial intelligence will automatically score 50% of college essays and nearly all multiple-choice examinations. Source: MMC Global
  • A majority (51%) think AI technologies will improve teacher education. Source: Quizlet
  • Approximately 56% of college students have used AI tools to complete assignments or exams. Source: Best Colleges

Healthcare

Personal Life

  • 54% of consumers think that written content will improve with AI technology. Source: Forbes
  • One in 10 cars will be self-driving by 2030. Source: Marketsandmarkets
  • 63% of consumers expect companies to use AI to personalize their experiences. Source: Master of Code Global
  • 75% of consumers are comfortable with chatbots managing routine customer service tasks. Source: AuthorityHacker
  • 51% of people consider AI helpful for finding a good work-life balance. Source: SnapLogic/Juliety
  • 69% of households in the US have at least one smart device. Source: Hippo/Juliety

Generative AI will play a pivotal role in our future, touching nearly every facet of our lives. From the workplace to education, healthcare, and personal experiences, AI is driving significant changes.

As we continue to embrace this technology, it is crucial to recognize both its potential benefits and the need for responsible implementation to ensure it serves the greater good. 

How will you integrate AI into your life to maximize its benefits?

Blog Futurism & Technology Trends Innovation

The rise of social and home robots: Transforming our lives with AI advancements

From the early days of bulky, room-sized computers to today’s sleek, powerful smartphones, technology has continuously become more integrated into our daily lives. The rise of AI has further accelerated this transformation, enabling innovations such as voice-activated virtual assistants, smart home devices, and autonomous vehicles. Amidst these technological strides, social and home robots have emerged, bringing a new dimension to how we interact with machines in our personal spaces.

Social robots are designed to engage with humans socially, often serving as companions, educators, or caregivers. These robots can recognize and respond to emotions, hold conversations, and even provide companionship to older people or those living alone. 

On the other hand, home robots are primarily designed to perform household tasks, making our lives more convenient and efficient. These robots can assist with cleaning, security, and even personal care.

As technology continues to advance, the capabilities of social and home robots will only expand, further integrating into our lives and transforming the way we live, work, play, and interact with our surroundings.

Robots in our lives

Social and home robots are emerging as valuable tools in modern society. They can play a crucial role in enhancing emotional well-being by providing companionship and reducing loneliness, particularly among older people and those living alone.

Social robots also offer practical benefits by assisting with household chores, allowing individuals more time for meaningful activities. They also support learning in educational settings by providing personalized assistance and engaging students in interactive ways.

As we integrate robots like these into our daily lives, it is crucial to understand the complexities of this technology. Ensuring that robots enhance rather than detract from our lives requires careful consideration of ethical and practical implications. Privacy concerns, the potential for over-reliance, and the need for human oversight are essential factors to address. By thoughtfully incorporating robots into our homes and social environments, we can leverage their benefits while mitigating potential drawbacks, ultimately enriching our lives meaningfully.

It can be your AI companion. As I mentioned, one of the most notable benefits of social robots is their ability to combat loneliness, especially among older people and individuals living alone. An example is Intuition Robotics. The company aims to empower older adults to live happier, healthier, and independent lives at home with an empathetic digital companion.

A study by the University of Glasgow, published in the International Journal of Social Robotics, highlighted another social robot, Pepper’s, potential to combat loneliness. Participants interacted with Pepper via Zoom over five weeks, and results showed that people disclosed more about themselves over time and felt less lonely. This interaction also improved their mood, indicating the robot’s potential as an emotional support tool. These robots can engage in conversations, provide reminders, and even offer entertainment, creating a sense of presence and interaction.

How about a robotic tutor? Researchers recently conducted an experiment involving 26 university students whose native language was Japanese. The students underwent a pre-test to assess their English-speaking skills. Based on their average scores, the students were divided into two groups: 14 students received instruction from a robot, while the remaining 12 participants received online lessons from English language teachers.

The results indicated that the group taught by the robot made fewer errors and spoke more fluently than the group taught by human tutors.

Who doesn’t want a house-cleaning “humanoid”? In addition to emotional and educational support, home robots can significantly reduce the time and effort spent on household tasks. Take Eve, for example. It is a humanoid robot that can perform a range of tasks. Equipped with cameras and sensors to perceive and interact with their surroundings, their mobility, dexterity, and balance allow them to navigate complex environments and manipulate objects effectively. This capability is particularly beneficial for busy families and individuals with physical limitations.

The future with robots

Social and home robots promise to transform our homes and enhance our daily lives in profound ways in the future. These robots can perform mundane tasks, creating more leisure time for us to spend on activities that matter most, such as pursuing hobbies, spending time with loved ones, and engaging in meaningful experiences.

According to Dr. Guy Laban, an Affiliated Research Associate at the University of Glasgow and a Postdoctoral Research Associate at the University of Cambridge, these robots can also become valuable conversational partners, crucial in interventions that support emotional health. His research highlights how robots can provide meaning and a safe space for those in need, lifting people’s moods even during challenging times like the pandemic.

The potential for robots to positively enhance our emotional and physical well-being is immense. Recent advances in AI, such as generative AI and large language models, are rapidly expanding the possibilities.

Roboticists often cite Moravec’s paradox: What is hard for humans is easy for machines, and what is easy for humans is hard for machines. AI is changing that.

One idea is to use the generative AI behind ChatGPT and similar tools to complete faster training and develop more skills for robots. Efforts include ways to program robots with plain written English rather than complex code and using AI systems to have robots learn by observing.

Specialized computer chips for robots will help, too. Nvidia recently unveiled a new chip and AI software for humanoid robots. AMD, Intel, Google, and Qualcomm also designed systems for robots.

AI capabilities will also enable robots to learn, reason, and make decisions based on complex data sets. This will allow robots to perform more complex tasks and adapt to changing environments, making them more versatile and useful.

Sensory abilities such as sight, touch, and hearing will enable robots to navigate their environment more effectively, interact with humans more intuitively, and perform more complex tasks that require precise sensory input.

Ultimately, the goal is not to eliminate human-to-human interaction but to create more space for it. Ethics must be at the forefront as we integrate these technologies into our homes. Understanding how humans establish healthy and constructive relationships with robots is critical to ensuring their ethical and responsible deployment. This careful consideration will help us harness the benefits of social and home robots while safeguarding our values and well-being.

Blog Futurism & Technology Trends Innovation

How Generations Z and Alpha are shaping the future of AI

As artificial intelligence (AI) becomes more and more engrained into our daily lives, we see Generation Z and Generation Alpha pioneering the use and development of this technological frontier. Their interaction with AI is redefining its applications and creating a future that we are only just starting to imagine.

Let’s delve into how these generations use AI today and what we can expect from them in the future.

Today’s AI Playground: From virtual clones to classroom helpers

Imagine having a virtual twin — a clone that knows you so well that it can answer and initiate questions on your behalf. For 1 million Gen Alpha users, this isn’t sci-fi: it’s reality, courtesy of Sendit. More than 1,000,000 Gen Alphas have already cloned themselves using Sendit’s AI tool. The app can share your story, even when you are not there, help friends pick out a present for you, or recommend a cool new restaurant to cousins.

But AI is not all fun and games. It is also transforming the way learning is delivered and received. Every month, Amazon’s Alexa fields 25 million questions from inquisitive children, showing that the thirst for knowledge is now quenched through voice-activated AI. 

ChatGPT is also proving to be a useful tool for both educators and students. A recent survey by Impact Research found that 51% of teachers reported using ChatGPT and a third of students.

AI in the classroom is just the beginning. As 2024 graduates step into the real world, a staggering 50% plan to acquire new skills, fully aware that tools like ChatGPT and DALL-E will be part of their future careers.

Salesforce found that 65% of today’s generative AI users are Millennials or Gen Z, and a formidable 72% of this cohort is gainfully employed, signifying the seamless integration of AI in the working world.

Moreover, nearly half of Gen Z prefer AI over their managers for advice, according to Workplace Intelligence. It’s clear that trust in AI’s capabilities is burgeoning.

Gen Z and Gen Alpha’s imprint on the next wave of AI technologies

With Gen Z being considered digital natives and Gen Alpha taking the crown as AI natives, it’s no wonder they are profoundly impacting where AI technology is heading.

Take Elemental Path’s CogniToy’s Dino, designed for young Gen Alphas, which uses IBM’s Watson to answer children’s questions and converse with them.

LEGO’s Boost Sets combine classic play with coding, demonstrating how introducing technology through fun and popular building blocks can teach kids about coding and AI. But Brian Schwab, director of interactive design at the LEGO Group sees this as only the beginning. In an interview with Toolify.Ai, Schwab shared that LEGO is incorporating AI to enhance the creative and interactive aspects of their iconic building bricks, allowing children to tell their own stories and explore their creativity in new ways.

Language learning has found a new ally in AI. The Duolingo Max application uses ChatGPT-4 to provide feedback and highly tailored lessons, much like a virtual tutor. Thus, creating more personalized learning experiences.

Personalization hits a high note as Spotify’s AI DJ presents music tailored to Gen Z and Gen Alpha tastes — be it fresh hits or old favorites. Spotify editors use GenAI to offer up facts about the music, artists, or genres being listened to. Through their acquisition of Sonantic they are also able to create AI DJs.

Gen Z doesn’t just see personalization for music; they would like to see AI bring personalization to all factors of their lives, including shopping. 88% of Gen Z consumers believe AI will improve online shopping. More than half of them hope for an AI shopping assistant to make it easier to find products based on their personal interests.

How those online products are delivered is also paramount to both Gen Z and Gen Alpha, who put sustainability and social awareness at the top of their interest list. This is helping to fuel new AI innovations. Amazon’s Package Decision Engine uses a multimodal AI model to determine the most efficient packaging for each item sold on its website. Meanwhile, DHL’s AI-powered OptiCarton software plays a game of Tetris with shipping containers, ensuring each container is filled with parcels, leaving no empty spaces.

Gen Z and Gen Alpha’s comfort level with AI and world views will shape what AI-powered apps they will use directly and how AI will be used to enhance the world around them. Their interaction with AI across learning, play, work, and lifestyle is a precursor to a society where AI is not just a tool but a collaborator, co-creator, and confidant.

Blog Futurism & Technology Trends Innovation

How technology can enhance real-world experiences

From digital transformation to experience transformation

The concept of hybrid reality – blending our virtual and physical worlds – has gained significant traction, fueled by a desire for more meaningful experiences along with advancements in artificial intelligence (AI) and immersive technologies. 

The COVID pandemic accelerated the shift to digital experiences such as remote work, home food delivery, online shopping, telemedicine, and more. While these experiences were initially met with widespread enthusiasm, as they offered unprecedented convenience and efficiencies in various aspects of daily life, many individuals began to recognize what this technology didn’t provide.

The lack of tangible human interaction and richness of real-world experiences left consumers realizing they did not want to live a digital-only life. For example, they loved to shop online but still wanted to go shopping, and while working from home provided new, exciting flexibility, they still wanted to interact with their teams in the office.

We’re all increasingly living in a time where much of our day is spent moving between different environments, experiences, and ways of doing things. From hybrid work to other hybrid physical/digital experiences, consumers will experience the merging of our physical and digital worlds – leading to better, more satisfying, and useful products and experiences for their everyday lives.  There is an opportunity for technology to augment our hybrid world, making it more seamless and adaptable to our needs.

Let’s dive into some of the ways this blending of physical and digital will affect our lives now and in the future.

Hybrid applications

Hybrid reality applications span diverse sectors, including entertainment, education, and healthcare, demonstrating their versatility and broad appeal. Augmented reality (AR) is one technology that will have a massive impact on hybrid reality. The AR market revenue is expected to top $21 billion this year.

Work

Whether someone is attending a meeting remotely or in the office, everyone wants to feel like they are an integral part of the team. This works great when everyone is either in person or virtual but is especially difficult when meetings are hybrid. HP is very focused on using AI-powered audio and video to make hybrid meeting experiences more engaging, no matter where you are. For example, this involves moving from a static video feed of everyone in the room to being able to frame the audio and video of the person speaking automatically.

And HP is not alone. Sixty-three percent of high-growth companies have adopted a “productivity anywhere” workforce model.

Touch

Touch is a big part of our physical world experience, but it is not possible when remote or virtual…yet. A startup, Emerge.io, has developed a virtual touch technology that allows you to feel a remote hug, handshake, or high-five literally. The small device creates a precise, ultrasonic force field, so now you can physically feel what you see on the screen or through your AR glasses. This could also be used for games, media content and video calls to set the stage for new hybrid experiences that include touch.

Writing

Even with all the technology today, some people still prefer using a pen to write in a physical notebook. What if you can have the best of both worlds? One approach is by adding a very accurate sensor to the pen, enabling the stylus to create a digital copy of anything you write or draw on paper. Another is to use the power of Generative AI to enable this, allowing you to have the physical benefit of writing with all the power and benefits of digital. This is another example of hybrid reality, blending our digital and physical worlds to create an even better experience than is possible in just a purely physical or purely digital experience.

Looking forward

The impending arrival of hybrid reality, an innovative blend of physical and digital worlds, is poised to revolutionize our interactions and work landscape. As hybrid reality becomes a tangible part of our daily lives, it will redefine the boundaries between virtual and physical realms and offer new, dynamic ways to interact with each other and our environment, profoundly impacting both our personal and professional lives.

Blog Futurism & Technology Trends Innovation Leadership

How weak signals can help you stay ahead of the next wave of innovation

A crucial ingredient for any successful business is understanding the trends shaping the world around us and that point to future opportunities.

If you miss these shifts, you risk being disrupted and, worse, going out of business. But if you can catch these potential trends early and capitalize on them, they instead mean growth and opportunity.

Catching these subtle changes early isn’t easy, however. All world-changing shifts don’t just magically appear, they start as weak signals, and you must look for them. A weak signal is very early evidence of a potential future mainstream trend. Given the very early nature of these signals, they may or may not actually become a trend. But identifying and monitoring weak signals over time is integral to getting in on new trends early. Sometimes this can be the difference between catching a new wave and leading this change or getting left behind.

As futurists, we want to be the disrupters, not those being disrupted. To do that, we need to constantly observe society and the world around us to find these new trends and weak signals.

Here are eight weak signals that our team is watching for future impact.

Eco-consumerism

Consumers are becoming more aware of how their consumption contributes to climate change, and this is changing their buying behaviors accordingly. As consumers become more eco-friendly, they’re putting pressure on brands to do the same by repurposing waste, using biodegradable materials, and prioritizing renewable resources. Companies that don’t embrace sustainability or give back to the planet in some way risk losing the support of consumers. With 77% of consumers concerned about the environmental impact of the products they buy, that’s a large demographic to risk losing.

Here’s a look at eco-consumerism at play:

  • These bio-concrete tiles are made with Japanese knotweed and American signal crayfish, two invasive species in the UK that would otherwise be considered waste. They also reduce carbon emissions caused by traditionally made concrete.
  • These running shoes from Zen Running Club are made entirely from plant-based materials, resulting in a fully biodegradable shoe.
  • Molded fiber, an eco-friendly packaging alternative, is gaining momentum. Once a time-consuming process, recent innovations like HP’s Molded Fiber Advanced Tooling Solution are accelerating the adoption of more sustainable packaging.

Rise of reality

While we are still living highly digital lives, and there is significant hype surrounding a potentially virtual future in the metaverse, there is also a growing need for a return to reality. After the lockdown portion of the pandemic, many of us are ready to return to physical spaces, travel, and in-person entertainment to escape Zoom fatigue and tech burnout. As more people crave unplugging over new online experiences, it will be critical for new technologies to enhance our physical experiences and interactions. Even further, tech companies are responsible for improving their products to battle burnout and enhance user experience.

Here’s a look at the rise of reality at play:

  • AiFi, an HP Tech Ventures portfolio company, offers AI-powered autonomous retail solutions, making shopping a seamless experience for consumers and retailers.
  • To address tech fatigue, many tech companies could provide time-limit features or recommend breaks to users. Other companies are getting even more creative, like these hologram startups aiming to make remote meetings feel less impersonal.
  • Location-based VR experiences, powered by technologies like HP’s VR backpack, allow users to blend the virtual with reality.

Distributed enterprise

In a recent HP Wolf Security report, 46% of office workers admitted using their work devices for personal tasks, and 69% claimed to have used their personal devices for work activities. This overlap between work and personal devices has been exacerbated by the increase in remote work, which has further blurred the line between consumer and enterprise. Enterprise products and services are being increasingly distributed across smaller home offices rather than large company headquarters. This has significant implications for cybersecurity and maintenance and could contribute to feature changes.

Here’s a look at distributed enterprise at play:

  • With the era of hybrid work upon us, there is a growing need for devices connecting home and corporate offices. Solutions like HP Presence provide powerful collaboration tools to reinvent how people connect.
  • Employees and companies can better protect their data from cybercriminals by embracing decentralized cybersecurity. Approaches like zero trust security are gaining popularity, with 78% of firms planning to adopt zero trust in 2022.
  • Remote maintenance is not entirely new, but it’s increasingly essential as remote work grows. Advanced remote management technologies, like NVIDIA’s Fleet Command, are working to optimize processes for global IT professionals.

Omniscient health

As people continue to be hyper-conscious of their health, there has been significant growth in health-related technologies ranging from wearable devices to AI-powered diagnostics. Wearables like fitness trackers have become smarter and more powerful, so users are gaining greater insight into their health. Health providers can use this new data, paired with the power of AI, to aid in their care. Microfluidics could also enable faster, less invasive, and more accurate diagnostics. As monitoring our health becomes part of our daily routine, chronic issues could be caught sooner, leading to more proactive care.

Here’s a look at omniscient health at play:

  • Using data from continuous wearable sensors, physiQ generates personalized and actionable insights for patients and their healthcare providers.
  • For people with chronic illnesses, health monitoring tools are essential. Fortunately, many startups are working to create more straightforward and less invasive health monitoring methods, such as BOYDSense, which developed a breath-based glucose level monitor for those with diabetes.
  • Using microfluidics, researchers at Northwestern developed a sticker that absorbs and uses sweat to accurately diagnose cystic fibrosis in newborns. Another research team from the University of Minnesota has also created a new microfluidic chip that could provide point-of-care diagnostics.

Internet of energy

At our current rate, global energy consumption is set to see a 50% increase between 2020 and 2050. With the growing volume of data, demand for clean energy, and increasing adoption of emerging technologies, a new energy system may be critical. Antiquated energy infrastructure, like electrical grids, cannot keep up with technology advancements and energy demands. The Internet of Energy may be the best solution, as it can reduce inefficiencies, limit waste, and maximize the potential of existing infrastructures. It could also lead to the adoption of smart grid technology, which would hugely benefit users and energy consumption.

Here’s a look at the internet of energy at play:

  • Smart panels from startups like Span balance home electricity use to avoid overloading utility grids.
  • Packetized Energy, recently acquired by EnergyHub, is a software platform aggregating energy devices such as water heaters, HVAC systems, electric vehicle chargers, solar inverters, and distributed batteries into dispatchable and flexible grid resources.
  • General Electric (GE) launched a startup, Current, which pairs LEDs and solar panels with software. This allows the system to gather data to apply insights to corporate operations to increase lighting and productivity savings.

Geospatial AI

The increasing number of satellites and improved image quality provides a plethora of data that, combined with supercomputing, allows Geospatial AI (GEOAI) to extract and impart impactful insights. This integration of geospatial studies and AI helps machine learning mimic human spatial reasoning and dynamics to better understand environmental and geographical impacts. This could lead to hyper-local and instantaneous weather forecasting, real-time wildfire detection, and other capabilities that could make environmental conservation and planning more seamless.

Here’s a look at GEOAI at play:

  • Google’s Machine Learning for Precipitation Nowcasting from Radar Images performs weather forecasting using real-time data instead of hours-old data.
  • The city of Boston will use data from satellites in the TreeTect pilot to improve tree equity and anticipate tree maintenance tasks.
  • Scientists from Stanford University developed a deep-learning model that maps fuel moisture levels across 12 of the US’ Western states, making it easier to predict where wildfires are likely to ignite and spread.

Transportation transformation

Growing concern for pollution and congestion is leading to disruptive innovation in transportation technology, policy, and infrastructure, which will radically change how we transport people and things in the future. Crowded freeways, slow delivery times, and an urgency to counteract climate change all demand revolutionary change in the transportation industry.

Urban transportation is central to the effort to slow climate change, with plenty of opportunities for growth and innovation. Home to more than half the world’s population, cities account for more than two-thirds of global carbon dioxide emissions. Transportation is often the most prominent and fastest-growing source of emissions and is the U.S.’ second-largest source of greenhouse gas emissions.

Here’s a look at transportation transformation at play:

  • Though not quite a reality yet, the idea of a hyperloop has long captivated society, with companies like Virgin and The Boring Company working towards its creation. The technology exists to create the ultra-fast transportation concept, but there are still significant hurdles to overcome.
  • TuSimple has created autonomous trucks, which promise improved safety, efficiency, and sustainability. Its trucks allegedly shaved 10 hours off a 24-hour run.
  • Florence has implemented smart trams, which could shape future transportation for other European cities.

3D-printed electronics

Advances in 3D printing technology that allow for voxel-level specification of materials, combined with improvements in metal substrates, will enable electronic components to be printed at the same time as durable parts, rather than being added as a separate assembly step after printing. These capabilities could allow electronic devices to be 3D-printed on demand as all-in-one elements, with no assembly required. This would minimize production costs and time and create an opportunity to reduce the size and weight of electronics.

Here’s a look at 3D-printed electronics at play:

  • Japanese CAD and 3D printing company SOLIZE uses HP 3D printers to make out-of-production spare parts for NISMO, the motorsport division of Nissan
  • Optomec’s Aerosol Jet printing technology enables 3D-printed electronics using aerodynamic focusing.
  • Nano Dimension’s Dragonfly IV 3D printer can generate entire circuits in one step.
  • Researchers at the University of Florida have developed a method of printing copper on fabric, a milestone for wearable electronics.

Considering the state of our world, futuristic thinking is a necessary skill we all need to learn and practice. With the constant and rapid pace of change, everyone should be honing their futurist skills. And thinking like a futurist isn’t reserved for a select group of people. It is a fundamental skill set that anyone can learn.

This is not something all of us do naturally, though. Only a small percent of the population thinks and plans for the future. In fact, only 35% of Americans regularly think about their five-year future. Those who aren’t thinking of their futures are disadvantaged over those who do. If we want to stay one step ahead in our fast-paced world, and if we’re going to move forward and create the future we want, we must adopt long-term, futuristic thinking.

To help you get started, here are three essential practices that I have found very useful in my career as a futurist:

  1. Monitor shifts — Pay attention and understand what’s happening in the world around you. Notice the small changes that create new needs. Keep an eye on these weak signals and any others that appear.
  2. Visualize future outcomes — Start with your vision for the future and work backward from there, not the other way around. What was the catalyst for your vision of the future?
  3. Adopt an innovative mindset — Have a “can do” attitude and be unstoppable. Embrace everything as a learning opportunity, even failure.

The more you think like a futurist, the better you can create the future you want.

Which of these weak signals are you interested in? Any others you are monitoring? Share your thoughts with me in the comments.

Blog Futurism & Technology Trends Innovation